
The

Modern Mail Handler

a Master’s Thesis

by

Markus Schnalke



advised by

Prof. Dr. Franz Schweiggert

and Dr. Andreas Borchert

Ulm University

2012

How do we convince people that in programming
simplicity and clarity – in short: what mathematicians
call ‘‘elegance’’ – are not a dispensable luxury, but a

crucial matter that decides between success and failure?

— Edsger W. Dijkstra —

CONTENTS

Preface ... vii

1 Introduction ... 1

1.1 MH – the Mail Handler ... 1

1.2 nmh .. 4

1.3 mmh ... 5

2 Discussion ... 9

2.1 Streamlining .. 10

2.1.1 Mail Transfer Facilities 10

2.1.2 Non-MUA Tools ... 13

2.1.3 Displaying Messages 14

2.1.4 Con�gure Options ... 15

2.1.5 Command Line Switches 19

2.2 Modernizing .. 24

2.2.1 Code Relics .. 24

2.2.2 Attachments .. 26

2.2.3 Signing and Encrypting 31

2.2.4 Draft and Trash Folder 32

2.2.5 Modern Defaults .. 34

2.3 Styling ... 36

2.3.1 Code Style ... 36

2.3.2 Structural Rework ... 38

2.3.3 Pro�le Reading ... 42

2.3.4 Standard Libraries ... 43

2.3.5 User Data Locations 45

2.3.6 Modularization ... 46

3 Summary ... 49

A Tools of mmh .. 51

References ... 53

v

PREFACE

I have discovered the mail client nmh in fall 2009. At that time I used mutt, as many
advanced Unix users do. When I read about nmh, its concepts convinced me at once.
The transition from mutt to nmh was similar to beginning with �le management in the
Unix shell when being used to the midnight commander, or like starting with vi when
being used to modeless editors. Such a change is not trivial, but, in being convinced by
the concepts and by having done similar transitions for �le management and editing
already, it was not too di�cult. In contrast, setting up nmh to a convenient state
became a tedious task that took several months. Once having nmh arranged this way, I
enjoyed using it because of its conceptional elegance and its scripting capabilities.
Nevertheless, it was still inconvenient for handling attachments, non-ASCII character
encodings, and similar features of modern emailing. My setup demanded more and
more additional con�guration and helper scripts to have nmh behave the way I
wanted; yet my expectations were rather common for modern emailing. As a computer
scientist and programmer, I wanted to improve the situation.

In spring 2010, I sent a message [mail: mta-mua] to the nmh-workers mailing list
[web: nmh-workers], asking for the possibility to o�er a Google Summer of Code
[web: gsoc] project for me. Participating in the development of nmh in this manner
appeared attractive to me, because I would have been able to work full time on nmh.
Although the nmh community had reacted generally positive to the suggestion, the
administrative work for such a project would had been too much. Nonetheless, my pro-
posal had activated the nmh community. In the following weeks, goals for nmh’s future
were discussed. In these discussions, I became involved in the question whether nmh
should include mail transfer facilities [mail: mta-mua]. I argued for the Mail Transfer
Agent of nmh to be removed. In this fundamental question, my opinion di�ered from
the opinion of most others. Sadly, besides the discussions, hardly any real work was
done. Being unable to work on nmh in a way that would be accepted at university as
part of my studies, I needed to choose another project.

Half a year later, starting in August 2010, I took one semester o� to travel through
Latin America. During my time in Argentina, I wanted to work on free software. This
brought me back to nmh. Richard Sandelman, an active nmh user, took care of the
o�cial basis. Juan Granda, an Argentine free software developer, organized a computer
with Internet connection. Thanks to them, I was able to work on nmh during my
three-month stay in Santiago del Estero, Argentina. Quickly it became obvious that I
would not succeed with my main goal, to improve the character encoding handling.
(One of its rami�cations is the missing transfer decoding of quoted text in replies.) As
this is one of the most intricate parts of the system, the goal was simply set too high.
Instead, I improved the code base as I read through it. I found minor bugs for which I
proposed �xes. Additionally, I improved the documentation in minor ways. When I
started to work on larger code changes, I had to discover that the community was
reluctant to change. Its wish for compatibility was much stronger than its wish for
convenient out-of-the-box setups – in contrast to my opinion. Once again, this led to

vii

viii Markus Schnalke: The Modern Mail Handler

long discussions. I came to understand their point of view, but it is di�erent from mine.
At the end of my three-month project, I had become familiar with nmh’s code base and
community, I had improved the project in minor ways, and I still was convinced that I
wanted to continue to do so.

Another half year later, the end of my studies came within reach. I needed to
choose a topic for my master’s thesis. Without question, I wanted to work on nmh. But
not exactly on nmh, because I had accepted that its community has di�erent goals than
I have. Working on nmh would result in much discussion and, in consequence, little
progress. After careful thought, I decided to start an experimental version of nmh. I
wanted to implement my own ideas of how an MH-like system should look like. I
wanted to create a usable alternative version to be compared with the present state of
nmh. Eventually, my work would be proven successful or not. In any case, the nmh
project would pro�t from my experiences.

Focus of this Document

This document explains the design goals and implementation decisions for mmh, an
experimental version of nmh. It discusses technical, historical, social and philosophical
considerations. On the technical side, this document explains how an existing project
was streamlined by removing rough edges and better exploitation of the central con-
cepts. On the historical side, changes through time are discussed, regarding the use
cases and the email features, as well as the reactions to them. Socially, this document
describes the e�ects and experiences of a newcomer with revolutionary aims entering
an old and matured software project. Philosophical thoughts on style, mainly based on
the Unix philosophy, are present throughout the discussions. The document describes
the changes to nmh, but as well, it clari�es my personal perception of the concepts of
MH and Unix, and explain my therefrom resulting point of view.

This document is written for the community around MH-like mail systems, includ-
ing developers and users. Despite the focus on MH-like systems, this document may be
valuable to anyone interested in the Unix philosophy and anyone in contact with old
software projects, be it code- or community-related.

The reader is expected to be familiar with Unix, C and emailing. Good Unix shell
knowledge is required, because MH relies fundamentally on the shell. Without the
power of the shell, MH becomes a motorcycle without winding roads: boring. Introduc-
tions to Unix and its shell can be found in The UNIX Programming Environment by Ker-
nighan and Pike [Kernighan84] or The UNIX System by Bourne [Bourne83]. The reader
is assumed to be a C programmer, but the document should be understandable other-
wise, too. The de�nitive guide to C is Kernighan and Ritchie’s The C Programming
Language [Kernighan88]. A book about system-level C programming, such as those
written by Rochkind and Curry [Rochkind85, Curry96], can be helpful as additional
literature. Old books are likely more helpful for understanding, because large parts of
the source code are old. The reader is expected to know the format of email messages
and the structure of email transfer systems, at least on a basic level. It’s advisable to
have cross-read RFC 821 and RFC 822. Furthermore, basic understanding of MIME
[RFC 2045–2049] is good to have. The Wikipedia provides good introduction-level infor-
mation about email [web: email].

Preface ix

Frequent references to the Unix philosophy will be made. Gancarz has tried to
sum it up in his book The UNIX Philosophy [Gancarz95]. Even better, though less con-
crete, are The UNIX Programming Environment [Kernighan84] and The Practice of Pro-
gramming [Kernighan99] by Kernighan and Pike. The term paper Why the Unix Philoso-
phy still matters [Schnalke10] by myself provides an overview on the philosophy,
including a case study of MH.

Although a brief introduction to MH is provided in Section 1.1, the reader is
encouraged to have a look at MH & nmh: Email for Users & Programmers by Jerry Peek
[Peek95]. The current version is available freely on the Internet. It is the de�nitive
guide to MH and nmh.

This document is neither a user’s tutorial to mmh nor an introduction to any of
the topics covered. The technical discussions are on an advanced level. Nevertheless, as
knowledge of the fundamental concepts is the most valuable information a user can
acquire about some program or software system, this document may be worth a read
for non-developers as well.

Organization

This thesis consists of three chapters. Chapter 1 introduces into the topic, describing
MH and explaining the background and goals of the mmh project. Chapter 2 discusses
the work done in the project. It is organized along the three major goals of the project,
namely streamlining, modernizing, and styling. Not every change is described because
that would bore the reader. Instead, important changes and those standing for a set of
similar changes are described and discussed. Chapter 3 �nishes up by summarizing the
achievements and taking a look into the future of the mmh project.

Italic font is used to emphasize new terms, and for names of software projects,
literature, and man pages. Constant width font is used to denote names of programs,
�les, functions, command lines, code excerpts, program input and output.

References to man pages are printed as ‘‘cat (1)’’. In this case it is a reference to
the man page of cat, which is in section one of the Unix manual. Requests for Com-
ments (RFCs), which describe the working of the Internet, are referenced as ‘‘RFC 821’’.
A list of relevant RFCs is located at the end of the document. Literature is cited in
brackets, such as ‘‘[Kernighan84]’’. Citations of email messages and websites are dis-
tinguished by ‘‘mail:’’ and ‘‘web:’’ pre�xes. All references are collected at the end of
the document. The websites of the software projects mentioned are collected in a list in
the appendix.

This document describes practical programming work. The code of mmh is
managed with the git version control system. All code changes were checked in. In
the discussions, references to corresponding code changes are printed as
‘‘[1a2b3c4]’’. The identi�er is the seven-letter-pre�x of the changeset hash value,
which is considered unique. A change can be looked up in the repository, on the com-
mand line with ‘git show XXX’, replacing ‘XXX’ with the concrete hash value or any
unique pre�x. In this example: ‘git show 1a2b3c4’. At the time of writing, changesets
can be looked up online at: http://git.marmaro.de/?p=mmh;a=commitdiff;h=XXX.
But as we all know, URIs are always at risk to change.

x Markus Schnalke: The Modern Mail Handler

Whenever lines of code were determined, David A. Wheeler’s sloccount was used
to measure the amount in a comparable way.

Acknowledgments

Chapter 1

INTRODUCTION

MH is a set of mail handling tools with a common concept. It is similar to the Unix
tool chest, which is a set of �le handling tools with a common concept. nmh is the
currently most popular implementation of an MH-like mail handling system. This
thesis describes an experimental version of nmh, named mmh.

This chapter introduces MH, its history, concepts and how it is used. It describes
nmh’s code base and community to give the reader a better understanding of the
project’s condition at the time when mmh started o�. Furthermore, this chapter out-
lines the mmh project itself, describing the motivation for it and its goals.

1.1 MH – THE MAIL HANDLER

MH is a conceptual email system design and its concrete implementation. MH had
started as a design proposal at RAND Corporation, where the �rst implementation fol-
lowed later. In spirit, MH is similar to Unix, which in�uenced the world more in being
a set of system design concepts than in being a speci�c software product. The ideas
behind Unix are summarized in the Unix philosophy [Gancarz95]. MH follows this phi-
losophy.

History

In 1977 at RAND Corporation, Norman Shapiro and Stockton Gaines proposed the
design of a new mail handling system [MH-Memo], to superseed RAND’s old monol-
ithic Mail System (MS). One year later, in 1978, Bruce Borden picked up on the propo-
sal and implemented a prototype, which he called Mail Handler (MH). Before the
prototype’s existence, the concept was believed to be practically unusable. But the pro-
totype – written in only three weeks – proved successful and replaced MS thereafter.
[Anderson89, p. 4]

In the early eighties, the University of California at Irvine (UCI) started to use
MH. Marshall T. Rose and John L. Romine then became the driving force. They took
over the development and pushed MH forward [Anderson89, p. 4]. RAND had put the
code into the public domain by then. MH was developed at UCI at the same time when
the Internet appeared, BSD started to support TCP/IP networking, and Eric Allman
wrote Sendmail. MH was extended as emailing became more featured. The develop-
ment of MH was closely related to the development of email RFCs. In the advent of the
Multipurpose Internet Mail Extensions (MIME), MH was one of the �rst implementations
of the new email standard.

In the nineties, the Internet became popular and in December 1996, Richard Cole-
man initiated the New Mail Handler (nmh) project. Nmh is a fork of MH 6.8.3 and

1

2 Markus Schnalke: The Modern Mail Handler

bases heavily on the LBL changes by Van Jacobson, Mike Karels and Craig Leres
[web: lbl]. Colman intended to modernize MH and improve its portability and MIME
handling capabilities. The development of MH at UCI stopped after the 6.8.4 release in
February 1996, soon after the development of nmh had started. Today, nmh is
developed openly in the Internet community. It has almost completely replaced the ori-
ginal MH. Some systems might still provide the old MH, but hardly for good reasons.

In the last years, the majority of changes in nmh was maintenance work.
Nevertheless, the development was revived in December 2011 and stayed busy since
then.

Concepts

MH consists of a set of tools, each covering a speci�c task of email handling, such as
composing a message, replying to a message, re�ling a message to a di�erent folder,
listing the messages in a folder. The tools are invoked directly from the Unix shell
[Anderson89].

The tools operate on a common mail storage, which consists of mail folders (direc-
tories) and messages (regular �les). Each message is stored in a separate �le [Ander-
son89]. The �les are named with ascending numbers in each folder. The speci�c format
of the mail storage characterizes MH in the same way as the format of the �le system
characterizes Unix.

MH tools maintain a context, which includes for instance the current mail folder.
Processes in Unix have a similar context, containing the current working directory, for
instance. In contrast, the process context is maintained by the Unix kernel automati-
cally, whereas MH tools need to maintain the MH context themselves. The user can
have one MH context or multiple ones; he can even share it with others.

Messages are named by their numeric �lename, but they can have symbolic
names, as well. These are either one of six system-controlled position names and a
shorthand for the range of all messages, or user-settable group names for arbitrary sets
of messages. These names are called sequences. Automatically updated position names
exist for the �rst, last, previous, next, current message, and for the number one beyond
the last message. (In mmh, the names of these sequences are abbreviated to the �rst
character.) User-de�ned sequences can be bound to the folder containing the messages
(public sequences) or to the user’s context (private sequences).

The user’s pro�le is the �le that contains his MH con�guration. Default switches
for the individual tools can be speci�ed to adjust them to the user’s personal prefer-
ences. These switches will be automatically supplied whenever the speci�c tool is
invoked. Additionally, a single command can be linked under di�erent names with
di�erent default values. Form templates for new messages and replies, as well as format
�les to adjust the output of tools are easily exchanged in the pro�le. Almost every part
of the system can be adjusted to personal preference.

The whole system is well scriptable and extensible. New MH tools are built out of
or on top of existing ones quickly. MH encourages the user to tailor, extend, and auto-
mate the system. As the MH tool chest was modeled after the Unix tool chest, the pro-
perties of the latter apply to the former as well.

Chapter 1 Introduction 3

Using MH

Many tutorials to using MH [Rose86, Moss88, Hegardt90] are old, but still they teach
the concepts and basics, which remained unchanged. Rose and Romine have written an
excellent introduction on a more technical level, with pointers to advanced usage
[Rose85]. For a more recent document, it is strongly recommended to have a look at
the MH Book [Peek95, Part II], especially at its online version.

Following here is a sample mail handling session with mmh. Details might vary to
MH and nmh but the look and feel is the same.

$ inc

Incorporating new mail into inbox...

1+ 2012–07–04 23:42 Bob The Unix philosophy

2 2365–05–15 02:17 "Jean–Luc Picard" Good advice

$ show (display the current message, i.e. the one marked with ‘+’)

Date: Wed, 04 Jul 2012 23:42:00 +0200

From: Bob <bob@example.org>

To: meillo@marmaro.de

Subject: The Unix philosophy

part text/plain 307

The design of MH follows the Unix philosophy.

> At the heart of the Unix philosophy is the idea that

> the power of a system comes more from the relationship

> among programs than from the programs themselves.

–– Brian W. Kernighan and Rob Pike

``The UNIX Programming Environment´´

(quotation freely rearranged)

$ refile +quotes (move the current message to the folder ‘quotes’)

Create folder "/home/meillo/Mail/quotes"? y

$ next (display the next message; equal to ‘show n’)

Date: Sat, 15 May 2365 02:17:00 +0000

From: "Jean–Luc Picard" <captain@uss–enterprise>

To: meillo@marmaro.de

Subject: Good advice

part text/plain 89

Open your mind to the past –– art, history, philosophy.

And all this may mean something.

4 Markus Schnalke: The Modern Mail Handler

$ repl (reply to this message)

[...] (the reply is composed in an editor session)

What now? send

$ folder (print information on the current folder)

inbox+ has 1 message (2–2); cur=2

$ scan (list the messages in the current folder)

2+ 2365–05–15 02:17 "Jean–Luc Picard" Good advice

$ scan +quotes (list the messages in folder ‘quotes’)

1 2012–07–04 23:42 Bob The Unix philosophy

$ scan +sent (list the messages in folder ‘sent’)

1 2012–07–12 08:23 To:"Jean–Luc Pica Re: Good advice

$

1.2 NMH

In order to understand the condition, goals and dynamics of a project, one needs to
know the reasons behind them. This section gives background information.

MH predates the Internet; it comes from times before networking was universal; it
comes from times when emailing was small, short and simple. Then, MH grew, spread
and adapted to the changes email went through. Its core concepts, however, remained
the same. During the eighties, students at UCI actively worked on MH. They added
new features and optimized the code for the systems popular at that time. This was in
times before POSIX and ANSI C. As large parts of the code stem from this time,
today’s nmh source code still contains many ancient parts. BSD-speci�c code and con-
structs tailored for hardware of that time are frequent.

Nmh started about one decade after the POSIX and ANSI C standards were
released. A more modern coding style entered the code base but still a part of the
developers were ‘‘of the old type’’. The developer base became more diverse, thus
broadening the range of di�erent coding styles. Programming practices from di�erent
decades merged in the project. As several peers added code, the system became more a
conglomeration of single tools rather than a homogeneous of-one-cast mail system. For
that, leadership would have been necessary. Nevertheless, MH’s basic concepts held the
project together. They were mostly untouched throughout the years.

Though clearly separated on the surface – as a collection of small, separate pro-
grams – the source code turns out to be fairly interwoven. Multiple separate com-
ponents are compiled into a program for e�ciency reasons. This leads to intricate
innards.

It is visible in nmh that the advent of MIME raised the complexity of email by a
magnitude. The MIME-related parts are the most complex ones. It is also visible that

Chapter 1 Introduction 5

MIME support was added on top of the old MH core. MH’s tool chest style made this
easily possible and encourages such approaches, but unfortunately, it led to duplicated
functions and half-hearted implementation of concepts.

To provide backward-compatibility, it is a common understanding in the nmh
community to not change the default settings. In consequence, users need to activate
modern features explicitly to be able to use them. The ancient style in which fresh
nmh setups remain to appear causes di�culties for new users, as modern email
features require additional con�guration. The small but mature community around
nmh, however, needs little change as they have had their convenient setups for
decades.

1.3 MMH

I started to work on my experimental version in October 2011, basing my work on
nmh version nmh-1.3-dev. At that time no more than three commits were made to nmh
since the beginning of 2011, the latest one being [a01a41d], committed on 2011-04-
13. In December, when I announced my work in progress on the nmh-workers mailing
list [mail: mmh-ann], nmh’s community became active, all of a sudden. This movement
was heavily pushed by Paul Vixie’s ‘‘edginess’’ comment [mail: edginess]. After long
years of stagnation, nmh became actively developed again. Hence, while I was working
on mmh, the community was working on nmh, in parallel but unrelated.

The name mmh may stand for modern mail handler, because the project tries to
modernize nmh. Personally however, I prefer to call mmh meillo’s mail handler,
emphasizing that the project is my version of nmh, following my visions and prefer-
ences. (My login name is meillo.) This project model was inspired by dwm, which is
Anselm Garbe’s personal window manager – targeted to satisfy Garbe’s personal needs
whenever con�icts appear. Dwm has retained its lean elegance and its focused charac-
ter [web: sloc-dwm], whereas its community-driven predecessor wmii had grown fat
over time [web: sloc-wmii]. The development of mmh should remain focused.

Motivation

MH is the most important of very few email systems in a tool chest style. Tool chests
are powerful because they can be perfectly automated and extended. They allow the
implementation of arbitrary kinds of front-ends on top of the tool chest quickly and
without internal knowledge. Additionally, tool chests are easier to maintain than
monolithic programs [Gancarz95, p. 14]. MH-like email tool chests should be kept alive
as they �ll a market niche by providing conceptional elegance and unique scripting
qualities. Mmh tries to create a modern and convenient entry point to MH-like systems
for new and interested users.

The mmh project is motivated by de�cits of nmh and by my wish for general
changes. At the time the mmh project started, nmh had not yet adjusted to modern
emailing needs well enough. The default setup was completely unusable for modern
emailing. Too much setup work was required. Several modern features were already
available, but the community did not want to have them active by default. Mmh is my
way to change this.

6 Markus Schnalke: The Modern Mail Handler

In my eyes, MH’s concepts could be exploited better and the style of the tools
could be improved. Both would simplify and generalize the system, providing cleaner
interfaces and greater software leverage at the same time. Mmh is my way to demon-
strate this.

In providing multiple parts of the email system, nmh can hardly compete with the
large specialized projects that focus on one of the components only. The situation
could be improved by concentrating the development power on the most unique part
of MH and letting the user pick his preferred set of other mail components. Today’s
pre-packaged software components encourage this model. Mmh is my way to provide
this.

It is worthwhile to fork nmh for the development of mmh, because the two pro-
jects focus on di�erent goals and di�er in fundamental questions. The nmh
community’s reluctance regarding change con�icts with my strong desire for it
[mail: nmh-goal]. In developing a separate experimental version, new approaches can
easily be tried out without the need to discuss changes beforehand. In fact, revolution-
ary changes are hardly possible otherwise.

The mmh project provides the basis on which the aforementioned ideas can be
implemented and demonstrated, without the need to change the nmh project or its
community. Of course, the results of the mmh project shall improve nmh, in the end.
By no means it is my intent to work against the nmh project.

Target Field

Any e�ort needs to be targeted towards a speci�c goal in order to be successful. There-
fore, a description of an imagined typical mmh user follows. Actually, as mmh is my
personal version of MH, this is sort of a description of myself. Developing software for
one’s own is a reliable way to produce software that matches the user’s desires.

The target user of mmh likes Unix and its philosophy. He appreciates to use pro-
grams that are conceptionally appealing. He is familiar with the command line and
enjoys its power. He is capable of shell scripting and wants to improve his productivity
by scripting the mail system. He uses modern email features, such as attachments,
non-ASCII text, digital signatures and message encryption in a natural way. He is able
to set up mail system components and likes to pick the ones he prefers. He has a rea-
sonably modern operating system that complies to the POSIX and ANSI C standards.

The typical user invokes mmh commands directly in an interactive shell session,
even on workstations where graphical front-ends could be added. Likely, he runs his
mail setup on a server machine, to which he connects via ssh. He might automate mail
processing with mmh tools but de�nitely he uses the tools to build better tools. In any
case, he wants to have the �exibility to change his setup to suit his needs.

The typical mmh user is a programmer. He likes to, occasionally, make use of the
opportunity of free software by putting hands on and getting involved in software he
uses. In consequence, he likes small and clean code bases and cares for code quality. In
general, he believes that:

• The elegance of source code is most important.

Chapter 1 Introduction 7

• Concepts are more important than concrete implementations.

• Code optimizations for anything but readability should be avoided.

• Removed code is debugged code.

• Having a lot of choice is bad.

Goals of the mmh Project

Streamlining
Mmh should be stripped down to its core, which is the user agent (MUA). The
feature set should be distilled to the indispensable ones, e�ectively removing
corner cases. Parts that do not add to the main task of being a conceptionally
appealing user agent should be removed. This includes the mail transfer and mail
retrieval facilities. Choice should be reduced to the main options. All tools should
be tightly shaped.

Modernizing
Mmh’s feature set needs to become more modern. Better support for attachments,
digital signatures, and message encryption should be added. MIME support should
be integrated deeper and more naturally. The modern email features need to be
readily available, out-of-the-box. On the other hand, obsolete facilities can be
dropped out and ancient technologies need not be further supported. The available
concepts should be expanded as far as possible. A small set of concepts should
recur consistently.

Styling
Mmh’s source code should be updated to modern standards. Standardized library
functions should replace non-standard versions whenever possible. Code should be
separated into distinct modules when feasible. Time and space optimizations
should to be replaced by clear and readable code. A uniform programming style
should prevail. The whole system should appear to be of-one-style; it should feel
like being cast as one.

Chapter 2

DISCUSSION

This main chapter discusses the practical work accomplished in the mmh project. It is
structured along the goals chosen for the project. A selection of the work undertaken is
described.

This discussion compares the present version of mmh with the state of nmh at the
time when the mmh project had started, i.e. fall 2011. Recent changes in nmh are
rarely part of the discussion.

For the reader’s convenience, the structure of modern email systems is depicted in
the following �gure. It illustrates the path a message takes from sender to recipient.

MUA

MSA

MTA . . . MTA MDA

MRA

MDAMUA

. .

The ellipses denote mail agents, i.e. di�erent jobs in email processing. These are:

Mail User Agent (MUA)
The only program users directly interact with. It includes functions to compose
new mail, display received mail, and to manage the mail storage. It is called a mail
client as well.

Mail Submission Agent (MSA)
A special kind of Mail Transfer Agent, used to submit mail into the mail transport
system. Often it is also called an MTA.

Mail Transfer Agent (MTA)
A node in the mail transport system. It transfers incoming mail to a transport
node nearer to the �nal destination. An MTA may be the �nal destination itself.

Mail Delivery Agent (MDA)
Delivers mail according to a set of rules. Usually, the messages are stored to disk.

9

10 Markus Schnalke: The Modern Mail Handler

Mail Retrieval Agent (MRA)
Initiates the transfer of mail from a remote location to the local machine. (The
dashed arrow in the �gure represents the pull request.)

The dashed boxes represent entities that usually reside on single machines. The box on
the lower left represents the sender’s system. The box on the upper left represents the
�rst mail transfer node. The box on the upper right represents the transfer node
responsible for the destination address. The box on the lower right represents the
recipient’s system. Often, the boxes above the dotted line are servers on the Internet.
Many mail clients, including nmh, include all of the components below the dotted line.
This is not the case for mmh; it implements the MUA only.

2.1 STREAMLINING

MH once provided a complete email system. The community around nmh tries to keep
nmh in similar shape. In fundamental contrast, mmh shall be an MUA only. I believe
that the development of all-in-one mail systems is obsolete. Today, email is too com-
plex to be fully covered by a single project. Such a project will not be able to excel in
all aspects. Instead, the aspects of email should be covered by multiple projects, which
then can be combined to form a complete system. Excellent implementations for the
various aspects of email already exist. Just to name three examples: Post�x is a special-
ized MTA, Procmail is a specialized MDA, and Fetchmail is a specialized MRA. I believe
that it is best to use such specialized tools instead of providing the same function once
more as a side component.

Doing something well requires focusing on a small set of speci�c aspects. Under
the assumption that development which is focussed on a particular area produces
better results there, specialized projects will be superior in their �eld of focus. Hence,
all-in-one mail system projects – no matter if monolithic or modular – will never be
the best choice in any of the �elds. Even in providing the most consistent all-in-one
system, they are likely to be beaten by projects that focus exclusively on the creation
of a homogeneous system by integrating existing mail components.

Usually, the limiting resource in the community development of free software is
man power. If the development e�ort is spread over a large development area, it
becomes more di�cult to compete with the specialists in the various �elds. The con-
crete situation for MH-based mail systems is even tougher, given their small and aged
community, concerning both developers and users.

In consequence, I believe that the available development resources should focus on
the point where MH is most unique. This is clearly the user interface – the MUA. Peri-
pheral parts should be removed to streamline mmh for the MUA task.

2.1.1 Mail Transfer Facilities

The removal of the mail transfer facilities, e�ectively dropping the MSA and MRA, had
been the �rst work task in the mmh project. The desire for this change initiated the
creation of the mmh project.

Focusing on one mail agent role only, is motivated by Eric Allman’s experience
with Sendmail. He identi�ed the limitation of Sendmail to the MTA task as one reason

Chapter 2 Discussion 11

for its success [Costales08, p. xviii]:

Second, I limited myself to the routing function – I wouldn’t write user

agents or delivery back-ends. This was a departure of the dominant thought

of the time, in which routing logic, local delivery, and often the network

code were incorporated directly into the user agents.

In nmh, the MSA is called Message Transfer Service (MTS). This facility, imple-
mented by the post command, establishes network connections and spoke SMTP to
submit messages to be relayed to the outside world. When email transfer changed, this
part needed to be changed as well. Encryption and authentication for network connec-
tions needed to be supported, hence TLS and SASL were introduced into nmh. This
added complexity without improving the core functions. Furthermore, keeping up with
recent developments in the �eld of mail transfer requires development power and spe-
cialists. In mmh, this whole facility was simply cut o� [f6aa95b] [fecd5d3]
[156d35f]. Instead, mmh depends on an external MSA. All outgoing mail in mmh
goes through the sendmail command, which almost any MSA provides. If not, a
wrapper program can be written. It must read the message from the standard input,
extract the recipient addresses from the message header, and hand the message over to
the MSA. For example, a wrapper script for qmail would be:

#!/bin/sh

exec qmail–inject # ignore command line arguments

The requirement to parse the recipient addresses out of the message header may be
removed in the future. Mmh could pass the recipient addresses as command line argu-
ments. This appears to be the better interface.

To retrieve mail, the inc command in nmh acts as MRA. It establishes network
connections and speaks POP3 to retrieve mail from remote servers. As with mail sub-
mission, the network connections required encryption and authentication, thus TLS and
SASL were added to nmh. Support for message retrieval through IMAP will soon
become necessary additions, too, and likewise for any other changes in mail transfer.
But not in mmh because it has dropped the support for retrieving mail from remote
locations [ab7b484]. Instead, it depends on an external tool to cover this task. Mmh
has two paths for messages to enter mmh’s mail storage: (1) Mail can be incorporated
with inc from the system maildrop, or (2) with rcvstore by reading them, one at a
time, from the standard input.

With the removal of the MSA and MRA, mmh converted from a complete mail
system to only an MUA. Now, of course, mmh depends on third-party software. An
external MSA is required to transfer mail to the outside world; an external MRA is
required to retrieve mail from remote machines. Excellent implementations of such
software exist. They likely are superior to the internal versions that were removed.
Additionally, the best suiting programs can be chosen freely.

As it had already been possible to use an external MSA and MRA, why should the
internal version not be kept for convenience? Transferred to a di�erent area, the ques-
tion, whether there is sense in having a fall-back pager in all the command line tools
for the cases when more or less are not available, appears to be ridiculous. Of course,
MSAs and MRAs are more complex than text pagers and not necessarily available but
still the concept of orthogonal design holds: ‘‘Write programs that do one thing and do

12 Markus Schnalke: The Modern Mail Handler

it well’’ [Salus94, McIlroy78]. Here, this part of the Unix philosophy was applied not
only to the programs but to the project itself. In other words: Develop projects that
focus on one thing and do it well. Projects which have grown complex should be split,
for the same reasons that programs which have grown complex should be split. If it is
conceptionally more elegant to have the MSA and MRA as separate projects then they
should be separated. In my opinion, this is the case. The RFCs suggest this separation
by clearly distinguishing the di�erent mail handling tasks [RFC 821]. The small inter-
faces between the mail agents support the separation as well.

Once, email had been small and simple. At that time, /bin/mail had covered
everything there was to email and still was small and simple. Later, the essential com-
plexity of email increased. (Essential complexity is the complexity de�ned by the prob-
lem itself [Brooks86].) Consequently, email systems grew. RFCs started to introduce the
concept of mail agents to separate the various roles because they became more exten-
sive and because new roles appeared. As mail system implementations grew, parts of
them were split o�. For instance, a POP server was included in the original MH; it was
removed in nmh. Now is the time to go one step further and split o� the MSA and
MRA, as well. Not only does this decrease the code size of the project, more impor-
tantly, it unburdens mmh of the whole �eld of message transfer, with all its implica-
tions for the project. There is no more need for concern with changes in network
transfer. This independence is gained by depending on external components that cover
the �eld.

In general, functionality can be added in three di�erent ways:

1. By implementing the function in the project itself.

2. By depending on a library that provides the function.

3. By depending on a program that provides the function.

While implementing the function in the project itself leads to the largest increase in
code size and requires the most maintenance and development work, it keeps the
project’s dependence on other software lowest. Using libraries or external programs
requires less maintenance work but introduces dependencies on external projects. Pro-
grams have the smallest interfaces and provide the best separation, but possibly limit
the information exchange. External libraries are more strongly connected than external
programs, thus information can be exchanged in a more �exible manner. Obviously,
adding code to a project increases the maintenance work. As implementing complex
functions in the project itself adds a lot of code, this should be avoided if possible.
Thus, the dependencies only change in their character, not in their existence. In mmh,
library dependencies on libsasl2 and libcrypto/libssl were traded against program
dependencies on an MSA and an MRA. This also meant trading build-time dependen-
cies against run-time dependencies. Besides providing stronger separation and greater
�exibility, program dependencies also allowed over 6 000 lines of code to be removed
from mmh. This made mmh’s code base about 12% smaller. Reducing the project’s code
size by such an amount without actually losing functionality is a convincing argument.
Actually, as external MSAs and MRAs are likely superior to the project’s internal ver-
sions, the common user even gains functionality.

Users of MH should not have problems setting up an external MSA and MRA.
Also, the popular MSAs and MRAs have large communities and a lot of available

Chapter 2 Discussion 13

documentation. Choices for MSAs range from small forwarders such as ssmtp and
nullmailer, over mid-size MTAs including masqmail and dma, up to full-featured MTAs
as for instance Post�x. MRAs are provided for example by fetchmail, getmail, mpop, and
fdm.

2.1.2 Non-MUA Tools

One goal of mmh is to remove the tools that do not signi�cantly contribute to the
MUA’s job. Loosely related and rarely used tools distract from a lean appearance, and
require maintenance work without adding much to the core task. By removing these
tools, mmh became more streamlined and focused.

• conflict was removed [8b23509] because it is a mail system maintenance
tool and not MUA-related. It even checked /etc/passwd and /etc/group for
consistency, which is completely unrelated to email. A tool like conflict is
surely useful, but it should not be shipped with mmh.

• rcvtty was removed [14767c9] because its use case of writing to the
user’s terminal on reception of mail is obsolete. If users like to be informed of
new mail, the shell’s MAILPATH variable or graphical noti�cations are techni-
cally more appealing. Writing to terminals directly is hardly ever desired
today. If, though, one prefers this approach, the standard tool write can be
used in a way similar to:

scan –file – | write `id –un`

• viamail was removed [eda72d6] when the new attachment system was
activated, because forw could then cover the task itself. The program send-

files was rewritten as a shell script wrapper around forw. [0e82199]

• msgchk was removed [bb9360e], because it lost its use case when POP
support was removed. A call to msgchk provided hardly more information
than:

ls –l /var/mail/meillo

Yet, it distinguished between old and new mail, but these details can be
retrieved with stat(1), too. A small shell script could be written to print the
information in a similar way, if truly necessary. As mmh’s inc only incor-
porates mail from the user’s local maildrop, and thus no data transfers over
slow networks are involved, there is hardly any need to check for new mail
before incorporating it.

• msh was removed [9166901] because the tool was in con�ict with the phi-
losophy of MH. It provided an interactive shell to access the features of MH.
However, it was not just a shell tailored to the needs of mail handling, but
one large program that had several MH tools built in. This con�icted with the
major feature of MH of being a tool chest. msh’s main use case had been
accessing Bulletin Boards, which have ceased to be popular.

Removing msh together with the truly archaic code relics vmh and wmh saved more
than 7 000 lines of C code – about 15% of the project’s original source code amount.
Having less code – with equal readability, of course – for the same functionality is an

14 Markus Schnalke: The Modern Mail Handler

advantage. Less code means less bugs and less maintenance work. As rcvtty and
msgchk are assumed to be rarely used and can be implemented in di�erent ways, why
should one keep them? Removing them streamlined mmh. viamail’s use case is now
partly obsolete and partly covered by forw, hence there is no reason to still maintain
it. conflict is not related to the mail client, and msh con�icts with the basic concept
of MH. These two tools might still be useful, but they should not be part of mmh.

Finally, there is slocal, which is an MDA and thus not directly MUA-related. It
should be removed from mmh because including it con�icts with the idea that mmh is
an MUA only. However, slocal provides rule-based processing of messages, like �ling
them into di�erent folders, which is otherwise not available in mmh. Although slocal

neither pulls in dependencies, nor does it include a separate technical area (cf. Sec.
2.1.1), it still accounts for about 1 000 lines of code that need to be maintained. As slo-

cal is almost self-standing, it should be split o� into a separate project. This would cut
the strong connection between the MUA mmh and the MDA slocal. For anyone not
using MH, slocal would become yet another independent MDA, like procmail . Then
slocal could be installed without a complete MH system. Likewise, mmh users could
decide to use procmail without having a second, unused MDA, i.e. slocal, installed.
That appears to be conceptionally the best solution. Yet, slocal is not split o�. I defer
the decision over slocal out of a need for deeper investigation. In the meanwhile, it
remains part of mmh as its continued existence is not signi�cant; slocal is unrelated
to the rest of the project.

2.1.3 Displaying Messages

Since the very beginning, already in the �rst concept paper [MH-Memo], show had
been MH’s message display program. show mapped message numbers and sequences to
�les and invoked mhl to have the �les formatted. With MIME, this approach was not
su�cient anymore. MIME messages can consist of multiple parts. Some parts, like
binary attachments or text content in foreign charsets, are not directly displayable.
show’s understanding of messages and mhl’s display capabilities could not cope with
the task any longer.

Instead of extending these tools, additional tools were written from scratch and
were added to the MH tool chest. Doing so is encouraged by the tool chest approach.
Modular design is a great advantage for extending a system, as new tools can be added
without interfering with existing ones. First, the new MIME features were added in
form of the single program mhn. The command ‘mhn –show 42’ had then shown the
message number 42, interpreting MIME. With the 1.0 release of nmh in February 1999,
Richard Coleman �nished the split of mhn into a set of specialized tools, which together
covered the multiple aspects of MIME. One of them was mhshow, which replaced ‘mhn
–show’. It was capable of displaying MIME messages appropriately.

From then on, two message display tools were part of nmh, show and mhshow. To
ease the life of users, show was extended to automatically hand the job over to mhshow

if displaying the message would be beyond show’s abilities. In consequence, the user
would simply invoke show (possibly through next or prev) and get the message
printed with either show or mhshow, whatever was more appropriate.

Having two similar tools for basically the same task is redundancy. Usually, users
do not distinguish between show and mhshow in their daily mail reading. Having two

Chapter 2 Discussion 15

separate display programs was therefore unnecessary from a user’s point of view.
Besides, the development of both programs needed to be in sync, to ensure that the
programs behaved in a similar way, because they were used like a single tool. Di�erent
behavior would have surprised the user.

Today, non-MIME messages are rather seen to be a special case of MIME mes-
sages, although it is the other way round. As mhshow already had been able to display
non-MIME messages, it appeared natural to drop show in favor of using mhshow

exclusively [4c1efdd]. Removing show is no loss in function, because mhshow covers
it completely. Yet, the old behavior of show can still be emulated with the simple com-
mand line:

mhl `mhpath c`

For convenience, mhshow was renamed to show after show was gone. It is clear that
such a rename may confuse future developers when trying to understand the history.
Nevertheless, I consider the convenience on the user’s side, to outweigh the inconveni-
ence for understanding the evolution of the tools.

To prepare for the transition, mhshow was reworked to behave more like show �rst
(cf. Sec. 2.1.3). Once the tools behaved more alike, the replacing appeared to be even
more natural. Today, mmh’s new show has become the one single message display pro-
gram once again, with the di�erence that today it handles MIME messages as well as
non-MIME messages. The outcomes of the transition are one program less to maintain,
no second display program for users to deal with, and less system complexity.

Still, removing the old show hurts in one regard: It had been such a simple pro-
gram. Its lean elegance is missing from the new show, but there is no alternative; sup-
porting MIME demands higher essential complexity.

2.1.4 Con�gure Options

Customization is a double-edged sword. It allows better suiting setups, but not for free.
There is the cost of code complexity to be able to customize. There is the cost of less
tested setups, because there are more possible setups and especially corner cases. Steve
Johnson con�rms [Raymond04, p. 233]:

Unless it is done very carefully, the addition of an on/o� con�guration

option can lead to a need to double the amount of testing. Since in practice

one never does double the amount of testing, the practical e�ect is to

reduce the amount of testing that any given con�guration receives. Ten

options leads to 1024 times as much testing, and pretty soon you are talk-

ing real reliability problems.

Additionally, there is the cost of choice itself. The code complexity directly a�ects the
developers. Less tested code a�ects both users and developers. The problem of choice
a�ects the users, for once by having to choose but also by more complex interfaces
that require more documentation. Whenever options add few advantages but increase
the complexity of the system, they should be considered for removal. I have reduced
the number of project-speci�c con�gure options from 15 to 3.

16 Markus Schnalke: The Modern Mail Handler

Mail Transfer Facilities

With the removal of the mail transfer facilities (cf. Sec. 2.1.1) �ve con�gure options
vanished:

The switches ––with–tls and ––with–cyrus–sasl had activated the support for
transfer encryption and authentication. They are not needed anymore. [fecd5d3]
[156d35f]

The con�gure switch ––enable–pop had activated the message retrieval facility.
Whereas the code area that had been conditionally compiled in for TLS and SASL sup-
port was small, the conditionally compiled code area for POP support was much larger.
The code base had only changed slightly on toggling TLS or SASL support but it had
changed much on toggling POP support. The changes in the code base could hardly be
overviewed. By having POP support togglable, a second code base had been created,
one that needed to be tested. This situation is basically similar for the conditional TLS
and SASL code, but there the changes are minor and can yet be overviewed. Still, con-
ditional compilation of a code base creates variations of the original program. More
variations require more testing and maintenance work.

Two other options had only speci�ed default con�guration values: ––with–mts

de�ned the default transport service [f6aa95b]. With ––with–smtpservers default
SMTP servers could be set [128545e]. Both of them became irrelevant when the
SMTP transport service was removed. In mmh, all messages are handed over to send-

mail for transportation.

Backup Pre�x

The backup pre�x is the string that was prepended to message �lenames to tag them
as deleted. By default it had been the comma character (‘,’). In July 2000, Kimmo
Suominen introduced the con�gure option ––with–hash–backup to change the default
to the hash character ‘#’. This choice was probably personal preference, but, being
related or not, words that start with the hash character introduce a comment in the
Unix shell. Thus, the command line ‘rm #13 #15’ calls rm without arguments because
the �rst hash character starts a comment that reaches until the end of the line. To
delete the backup �les, ‘rm ./#13 ./#15’ needs to be used. Thus, using the hash as
backup pre�x may be seen as a precaution against backup loss.

First, I removed the con�gure option but added the pro�le entry Backup–Prefix,
which allowed to specify an arbitrary string as backup pre�x [6c40d48]. This
change did not remove the choice but moved it to a location where it suited better, in
my eyes.

Eventually however, the new trash folder concept (cf. Sec. 2.2.4) removed the need
for the backup pre�x completely. [8edc5aa] [ca0b3e8]

Editor and Pager

The two con�gure options ––with–editor=EDITOR ––with–pager=PAGER were used to
specify the default editor and pager at con�gure time. Doing so at con�gure time made
sense in the eighties, when the set of available editors and pagers varied much across
di�erent systems. Today, the situation is more homogeneous. The programs vi and
more can be expected to be available on every Unix system, as they are speci�ed by

Chapter 2 Discussion 17

POSIX since two decades. (The speci�cations for vi and more appeared in [XVS87] and
[XCU92], respectively.) As a �rst step, these two tools were hard-coded as defaults
[5d43a99]. Not changed were the editor and moreproc pro�le entries, which
allowed the user to override the system defaults. Later, the concept was reworked again
to respect the standard environment variables VISUAL and PAGER if they are set. Today,
mmh determines the editor to use in the following order, taking the �rst available and
non-empty item [f85f4b7]:

1. Environment variable MMHEDITOR

2. Pro�le entry Editor

3. Environment variable VISUAL

4. Environment variable EDITOR

5. Command vi.

The pager to use is determined in a similar order [0c4214e]:

1. Environment variable MMHPAGER

2. Pro�le entry Pager (replaces moreproc)

3. Environment variable PAGER

4. Command more.

By respecting the VISUAL/EDITOR and PAGER environment variables, the new behavior
complies with the common style on Unix systems. It is more uniform and clearer for
users.

ndbm

slocal used to depend on the database library ndbm . The database is used to store the
Message–ID: header �eld values of all messages delivered. This enabled slocal to
suppress delivering the same message to the same user twice. This features was
enabled by the –suppressdup switch.

As a variety of versions of the database library exist [Wolter04], complicated auto-
conf code was needed to detect them correctly. Furthermore, the con�gure switches ––

with–ndbm=ARG and ––with–ndbmheader=ARG were added to help with di�cult setups
that would not be detected automatically or not correctly.

By removing the suppress duplicates feature of slocal, the dependency on ndbm
vanished and 120 lines of complex autoconf code could be saved [ecd6d6a]. The
change removed functionality but that is considered minor to the improvement of
dropping the dependency and the complex autoconf code.

MH-E Support

The con�gure option ––disable–mhe was removed when the MH-E support was
reworked. MH-E is the Emacs front-end to MH. It requires MH to provide minor addi-
tional functions. The ––disable–mhe con�gure option had switched o� these exten-
sions. After removing the support for old versions of MH-E, only the –build switches
of forw and repl are left to be MH-E extensions. They are now always built in
because they add little code and complexity. In consequence, the ––disable–mhe

con�gure option was removed [a7ce7b4]. Dropping the option also removed a

18 Markus Schnalke: The Modern Mail Handler

variant of the code base that would have needed to be tested. This change was under-
taken in January 2012 in nmh and thereafter merged into mmh.

Masquerading

The con�gure option ––enable–masquerade could take up to three arguments:
draft_from, mmailid, and username_extension. They activated di�erent types of
address masquerading. All of them were implemented in the SMTP-speaking post com-
mand. Address masquerading is an MTA’s task and mmh does not cover this �eld
anymore. Hence, true masquerading needs to be implemented in the external MTA.

The mmailid masquerading type is the oldest one of the three and the only one
available in the original MH. It provided a username to fakeusername mapping, based
on the passwd’s GECOS �eld. Nmh’s man page mh-tailor (5) described the use case as
being the following:

This is useful if you want the messages you send to always appear to come

from the name of an MTA alias rather than your actual account name. For

instance, many organizations set up ‘First.Last’ sendmail aliases for all

users. If this is the case, the GECOS �eld for each user should look like:

‘‘First [Middle] Last <First.Last>’’

As mmh sends outgoing mail via the local MTA only, the best location to do such
global rewrites is there. Besides, the MTA is conceptionally the right location because it
does the reverse mapping for incoming mail (aliasing), too. Furthermore, masquerading
set up there is readily available for all mail software on the system. Hence, mmailid
masquerading was removed. [0836c80]

The username_extension masquerading type did not replace the username but
would append a su�x, speci�ed by the USERNAME_EXTENSION environment variable, to
it. This provided support for the user-extension feature of qmail [Sill02, p. 141] and the
similar plussed user processing of Sendmail [Costales08, p. 476]. The decision to remove
this username_extension masquerading was motivated by the fact that spost had not
supported it yet. Username extensions can be used in mmh, but less convenient.
[2abae0b]

The draft_from masquerading type instructed post to use the value of the From:

header �eld as SMTP envelope sender. Sender addresses could be replaced completely.
Mmh o�ers a kind of masquerading similar in e�ect, but with technical di�erences. As
mmh does not transfer messages itself, the local MTA has �nal control over the
sender’s address. Any masquerading mmh introduces may be reverted by the MTA. In
times of pedantic spam checking, an MTA will take care to use sensible envelope
sender addresses to keep its own reputation up. Nonetheless, the MUA can set the
From: header �eld and thereby propose a sender address to the MTA. The MTA may
then decide to take that one or generate the canonical sender address for use as
envelope sender address. [b14ea60]

In mmh, the MTA will always extract the recipient and sender from the message
header (sendmail’s –t switch). The From: header �eld of the draft may be set arbitrary
by the user. If it is missing, the canonical sender address will be generated by the MTA.

Chapter 2 Discussion 19

Remaining Options

Two con�gure options remain in mmh. One is the locking method to use: ––with–

locking=[dot|fcntl|flock|lockf]. The idea of removing all methods except the
portable dot locking and having that one as the default is appealing, but this change
requires deeper technical investigation into the topic. The other option, ––enable–

debug, compiles the programs with debugging symbols. This option is likely to stay.

2.1.5 Command Line Switches

The command line switches of MH tools are similar in style to the switches in the X
Window System. They consist of a single dash (‘–’) followed by a word. For example
‘–truncate’. To ease typing, the word can be abbreviated, given the remaining pre�x is
unambiguous. If no other switch starts with the letter ‘t’, then any of ‘–truncate’, ‘–
trunc’, ‘–tr’, and ‘–t’ is equal. As a result, switches can neither be grouped (as in ‘ls
–ltr’) nor can switch arguments be appended directly to the switch (as in ‘sendmail
–q30m’). Many switches have negating counter-parts, which start with ‘no’. For example
‘–notruncate’ inverts the ‘–truncate’ switch. They exist to override the e�ect of
default switches in the pro�le. Every program in mmh has two generic switches: –

help, to print a short message on how to use the program, and –Version (with capital
‘V’), to tell what version of mmh the program belongs to.

Switches change the behavior of programs. Programs that do one thing in one
way require no switches. In most cases, doing something in exactly one way is too lim-
iting. If one task should be accomplished in various ways, switches are a good
approach to alter the behavior of a program. Changing the behavior of programs pro-
vides �exibility and customization to users, but at the same time it complicates the
code, the documentation, and the usage of the program. Therefore, the number of
switches should be kept small. A small set of well-chosen switches is best. Usually, the
number of switches increases over time. Already in 1985, Rose and Romine have
identi�ed this as a major problem of MH [Rose85, p. 12]:

A complaint often heard about systems which undergo substantial develop-

ment by many people over a number of years, is that more and more

options are introduced which add little to the functionality but greatly

increase the amount of information a user needs to know in order to get

useful work done. This is usually referred to as creeping featurism.

Unfortunately MH, having undergone six years of o�-and-on develop-

ment by ten or so well-meaning programmers (the present authors

included), su�ers mightily from this.

Being reluctant to adding new switches (or options, as Rose and Romine call them)
is one part of a counter-action, the other part is removing hardly used switches. Nmh’s
tools have lots of switches already implemented. Hence, cleaning up by removing some
of them was the more important part of the counter-action. Removing existing func-
tionality is always di�cult because it breaks programs that use these functions. Also,
for every obsolete feature, there’ll always be someone who still uses it and thus
opposes its removal. This puts the developer into the position, where sensible improve-
ments to style are regarded as destructive acts. Yet, living with the featurism is far
worse, in my eyes, because future needs will demand adding further features, worsen-
ing the situation more and more. Rose and Romine added in a footnote, ‘‘[...] send will

20 Markus Schnalke: The Modern Mail Handler

no doubt acquire an endless number of switches in the years to come’’ [Rose85, p. 12].
Although clearly humorous, the comment points to the nature of the problem. Refusing
to add any new switches would encounter the problem at its root, but this is not prac-
tical. New needs will require new switches and it would be unwise to block them
strictly. Nevertheless, removing obsolete switches still is an e�ective approach to deal
with the problem. Working on an experimental branch without an established user
base, eased my work because I did not o�end users when I removed existing functions.

Rose and Romine counted 24 visible and 9 more hidden switches for send. In nmh,
they increased up to 32 visible and 12 hidden ones. At the time of writing, no more
than 4 visible switches and 1 hidden switch have remained in mmh’s send. These
numbers include the two generic switches, –help and –Version.

Hidden switches are ones not documented. In mmh, 12 tools have hidden
switches. 9 of them are –debug switches, the other 6 provide special interfaces for
internal use.

The following �gure displays the number of switches for each of the tools that is
available in both nmh and mmh. The tools are sorted by the number of switches they
had in nmh. Both visible and hidden switches were counted, but not the generic help
and version switches. Whereas in the beginning of the project, the average tool had 11

switches, now it has no more than 5 – only half as many. If the ‘no’ switches and simi-
lar inverse variant are folded onto their counter-parts, the average tool had 8 switches
in pre-mmh times and has 4 now. The total number of functional switches in mmh
dropped from 465 to 233.

0

10

20

30

40

number
of

switches

40 tools
(send, repl, spost, forw, pick, folder, mhl, ...)

•..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

•..
.
.
.
.
.
.

•..
.
.
.
.
.
.
.
.
.
.
.
.
.
.

•..
.
.
.
.
.
.
.
.
.
. •.. •

•..
.
.
.
.
.
.
.
.
.
.

•..
.
.
.
.
.
.
.
.

•..
.
.
.
.
.
.
.
.

•..
.
.
.
.
.
.
.
.
.
.
.

•..
.
.
.
.
.

•

•..
.
.
.
.
. •

•..
.
.
.
.
•.
.

•..
..
.

•..
..
.. •..

.

•..
..
.

•..
..
..

•..
.
. •.. •.. ••

•..
.
.
••..

.
••..

•.
. ••.. •.. ••.. ••.. •..

nmh

mmh •

A part of the switches vanished after functions were removed. This was the case
for network mail transfer, for instance. Sometimes, however, the work �ow was the
other way: I looked through the mh-chart (7) man page to identify the tools with
apparently too many switches. Then I considered the bene�t of each switch by examin-
ing the tool’s man page and source code, aided by literature research and testing.

Chapter 2 Discussion 21

Draft Folder Facility

A change early in the project was the complete transition from the single draft mes-
sage to the draft folder facility [337338b] (cf. Sec. 2.2.4). The draft folder facility was
introduced in the mid-eighties, when Rose and Romine called it a ‘‘relatively new
feature’’ [Rose85]. Since then, the facility was included, inactive by default. By making
it permanently active and by related rework of the tools, the –[no]draftfolder, and
–draftmessage switches could be removed from comp, repl, forw, dist, whatnow, and
send [337338b]. The only �exibility lost with this change is having multiple draft
folders within one pro�le. I consider this a theoretical problem only. At the same time,
the –draft switch of anno, refile, and send was removed. The special treatment of
the draft message became irrelevant after the rework of the draft system (cf. Sec. 2.2.4).

In Place Editing

anno had the switches –[no]inplace to either annotate the message in place and thus
preserve hard links, or annotate a copy to replace the original message. The latter
approach broke hard links. Following the assumption that linked messages should truly
be the same message and annotating it should not break the link, the –[no]inplace

switches were removed and the previous default –inplace was made the de�nitive
behavior [c819584]. The –[no]inplace switches of repl, forw, and dist could be
removed, as well, as they were simply passed through to anno.

burst also had –[no]inplace switches, but with a di�erent meaning. With –

inplace, the digest had been replaced by the table of contents (i.e. the introduction
text) and the burst messages were placed right after this message, renumbering all fol-
lowing messages. Also, any trailing text of the digest was lost, though, in practice, it
usually consists of an end-of-digest marker only. Nonetheless, this behavior appeared
less elegant than the –noinplace behavior, which already had been the default. Nmh’s
burst (1) man page reads:

If –noinplace is given, each digest is preserved, no table of contents is pro-

duced, and the messages contained within the digest are placed at the end

of the folder. Other messages are not tampered with in any way.

The decision to drop the –inplace behavior was supported by the code complexity and
the possible data loss it caused. –noinplace was chosen to be the de�nitive behavior.
[68a686a]

Forms and Format Strings

Historically, the tools that had –form switches to supply a form �le had –format

switches as well to supply the contents of a form �le as a string on the command line
directly. In consequence, the following two lines equaled:

scan –form scan.mailx

scan –format "`cat /path/to/scan.mailx`"

The –format switches were dropped in favor for extending the –form switches
[f51956b]. If their argument starts with an equal sign (‘=’), then the rest of the
argument is taken as a format string, otherwise the arguments is treated as the name
of a format �le. Thus, now the following two lines equal:

22 Markus Schnalke: The Modern Mail Handler

scan –form scan.mailx

scan –form "=`cat /path/to/scan.mailx`"

This rework removed the pre�x collision between –form and –format. Typing ‘–fo’ is
su�cient to specify form �le or format string.

The di�erent meaning of –format for forw and repl was removed in mmh. forw
was completely switched to MIME-type forwarding, thus removing the –[no]format

[6e27160]. For repl, the –[no]format switches were reworked to –[no]filter

switches [67411b1]. The –format switches of send and post, which had a third
meaning, were removed likewise [f3cb7cd]. Eventually, the ambiguity of the –

format switches is resolved by not having such switches anymore in mmh.

MIME Tools

The MIME tools, which once were part of mhn (whatever that stood for), had several
switches that added little practical value to the programs. The –[no]realsize switches
of mhbuild and mhlist were removed [8d8f1c3]. Real size calculations are done
always now because nmh’s mhbuild (1) man page states that ‘‘This provides an accurate
count at the expense of a small delay’’ with the small delay not being noticeable on
modern systems.

The –[no]check switches were removed together with the support for Content–

MD5: header �elds [RFC 1864] (cf. Sec. 2.2.1) [31dc797].

The –[no]ebcdicsafe and –[no]rfc934mode switches of mhbuild were removed
because they are considered obsolete [01a3480] [3363e26].

Content caching of external MIME parts, activated with the –rcache and –wcache

switches was completely removed [d1fefd9]. External MIME parts are rare today,
having a caching facility for them appears to be unnecessary.

In pre-MIME times, mhl had covered many tasks that are part of MIME handling
today. Therefore, mhl could be simpli�ed to a large extend, reducing the number of its
switches from 21 to 6 [350ad6d] [0e46503].

Header Printing

folder’s data output is self-explaining enough that displaying the header line makes
little sense. Hence, the –[no]header switch was removed and headers are never
printed [601cc73].

In mhlist, the –[no]header switches were removed, as well [b24f965]. In this
case, the headers are printed always because the output is not self-explaining.

scan also had –[no]header switches. Printing this header had been sensible until
the introduction of format strings made it impossible to display column headings. Only
the folder name and the current date remained to be printed. As this information can
be perfectly generated with folder and date, the switches were removed [c477dc5].

By removing all –header switches, the collision with –help on the �rst two letters
was resolved. Currently, –h evaluates to –help for all tools of mmh.

Chapter 2 Discussion 23

Suppressing Edits or the Invocation of the WhatNow Shell

The –noedit switch of comp, repl, forw, dist, and whatnow was removed and
replaced by specifying –editor with an empty argument [75fca31]. (Specifying ‘–
editor /bin/true’ is nearly the same. It di�ers only in setting the previous editor.)

The more important change is the removal of the –nowhatnowproc switch
[ee4f43c]. This switch had once introduced an awkward behavior, as explained in
nmh’s man page for comp (1):

The –editor editor switch indicates the editor to use for the initial edit.

Upon exiting from the editor, comp will invoke the whatnow program. See

whatnow (1) for a discussion of available options. The invocation of this

program can be inhibited by using the –nowhatnowproc switch. (In truth of

fact, it is the whatnow program which starts the initial edit. Hence, –

nowhatnowproc will prevent any edit from occurring.)

E�ectively, the –nowhatnowproc switch caused only only a draft message to be
created. As ‘–whatnowproc /bin/true’ does the same, the –nowhatnowproc switch was
removed for being redundant.

Various

• With the removal of MMDF maildrop format support, packf and rcvpack no
longer needed their –mbox and –mmdf switches. The behavior of –mbox is the
sole behavior now [3916ab6]. Further rework in both tools made the –

file switch unnecessary [ca10237].

• Mmh’s tools do no longer clear the screen (scan’s and mhl’s –[no]clear

switches [e57b173] [943765e]). Neither does mhl ring the bell (–
[no]bell [e11983f]) nor does it page the output itself (–length
[5b9d883]). Generally, the pager to use is no longer speci�ed with the –

[no]moreproc command line switches for mhl and show/mhshow [39e87a7].

• In order to avoid pre�x collisions among switch names, the –version switch
was renamed to –Version (with capital ‘V’) [32b2354]. Every program has
the –version switch but its �rst three letters collided with the –verbose

switch, present in many programs. The rename solved this problem once for
all. Although this rename breaks a basic interface, having the –V abbreviation
to display the version information, isn’t all too bad.

• –[no]preserve of refile was removed [8edc5aa] because what use was
it anyway? Quoting nmh’s man page re�le (1):

Normally when a message is re�led, for each destination folder it

is assigned the number which is one above the current highest

message number in that folder. Use of the –preserv [sic!] switch

will override this message renaming, and try to preserve the

number of the message. If a con�ict for a particular folder occurs

when using the –preserve switch, then refile will use the next

available message number which is above the message number

you wish to preserve.

24 Markus Schnalke: The Modern Mail Handler

• The removal of the –[no]reverse switches of scan [8edc5aa] is a bug �x.
This is supported by the comments ‘‘–[no]reverse under #ifdef BERK (I really
HATE this)’’ by Rose and ‘‘Lists messages in reverse order with the ‘–reverse’
switch. This should be considered a bug’’ by Romine in the changelogs. The
question remains why neither Rose nor Romine have �xed this bug in the
eighties when they wrote these comments.

2.2 MODERNIZING

In the more than thirty years of MH’s existence, its code base was increasingly
extended. New features entered the project and became alternatives to the existing
behavior. Relics from several decades have gathered in the code base but seldom
obsolete features were dropped. This section describes the removing of old code and
the modernizing of the default setup. It focuses on the functional aspect only; the non-
functional aspects of code style are discussed in Sec. 2.3.1.

2.2.1 Code Relics

My position regarding the removal of obsolete code is much more revolutional than the
nmh community appreciates. Working on an experimental version, I was able to
quickly drop functionality that I considered ancient. The need for consensus with peers
would have slowed this process down. Without the need to justify my decisions, I was
able to rush forward.

In December 2011, Paul Vixie motivated the nmh developers to just do the work
[mail: edginess]:

let’s stop walking on egg shells with this code base. there’s no need to dis-

cuss whether to keep using vfork, just note in [sic!] passing, [...] we don’t

need a separate branch for removing vmh or ridding ourselves of #ifdef’s or

removing posix replacement functions or depending on pure ansi/posix

‘‘libc’’.

these things should each be a day or two of work and the ‘‘main

branch’’ should just be modern. [...] let’s push forward, aggressively.

I did so already in the months before. I pushed forward. I simply dropped the cruft.

The decision to drop a feature was based on literature research and careful think-
ing, but whether having had contact with this particular feature within my own com-
puter life served as a rule of thumb. I explained my reasons in the commit messages in
the version control system. Hence, others can comprehend my view and argue for
undoing the change if I have missed an important aspect. I was quick in dropping
parts. I rather include falsely dropped parts again, than going at a slower pace. Mmh is
experimental work; it requires tough decisions.

Process Forking

Being a tool chest, MH creates many processes. In earlier times fork() had been an
expensive system call, because the process’s image needed to be completely duplicated
at once. This expensive work was especially unnecessary in the commonly occurring
case wherein the image is replaced by a call to exec() right after having forked the

Chapter 2 Discussion 25

child process. The vfork() system call was invented to speed up this particular case. It
completely omits the duplication of the image. On old systems this resulted in
signi�cant speed ups. Therefore MH used vfork() whenever possible.

Modern memory management units support copy-on-write semantics, which make
fork() almost as fast as vfork(). The man page of vfork (2) in FreeBSD 8.0 states:

This system call will be eliminated when proper system sharing mechan-

isms are implemented. Users should not depend on the memory sharing

semantics of vfork() as it will, in that case, be made synonymous to fork(2).

Vixie supports the removal with the note that ‘‘the last system on which fork was so
slow that an mh user would notice it, was Eunice. that was 1987’’ [mail: edginess]. I
replaced all calls to vfork() with calls to fork() [40821f5].

Related to the costs of fork() is the probability of its success. In the eighties, on
heavy loaded systems, calls to fork() were prone to failure. Hence, many of the
fork() calls in the code were wrapped into loops to retry the fork() several times, to
increase the chances to succeed eventually. On modern systems, a failing fork() call is
unusual. Hence, in the rare case when fork() fails, mmh programs simply abort
[5fbf37e].

Header Fields

• The Encrypted: header �eld was introduced by RFC 822, but already marked
as legacy in RFC 2822. Today, OpenPGP provides the basis for standardized
exchange of encrypted messages [RFC 4880, RFC 3156]. Hence, the support for
Encrypted: header �elds is removed in mmh [064527f].

• The native support for Face: header �elds has been removed, as well
[8e5be81]. This feature is similar to the X–Face: header �eld in its intent,
but takes a di�erent approach to store the image. Instead of encoding the
image data directly into the header �eld, it contains the hostname and UDP
port where the image date can be retrieved. There is even a third Face sys-
tem, which is the successor of X–Face:, although it re-uses the Face: header
�eld name. It was invented in 2005 and supports colored PNG images. None
of the Face systems described here is popular today. Hence, mmh has no
direct support for them.

• The Content–MD5: header �eld was introduced by RFC 1864. It provides
detection of data corruption during the transfer. But it can not ensure verba-
tim end-to-end delivery of the contents [RFC 1864]. The proper approach to
verify content integrity in an end-to-end relationship is the use of digital sig-
natures [RFC 4880]. On the other hand, transfer protocols should detect corr-
uption during the transmission. The TCP includes a checksum �eld therefore.
These two approaches in combinations render the Content–MD5: header �eld
super�uous. Not a single one out of 4 200 messages from two decades in the
nmh-workers mailing list archive [web: nmh-workers] contains a Content–

MD5: header �eld. Neither did any of the 60 000 messages in my personal mail
storage. Removing the support for this header �eld [31dc797], removed the
last place where MD5 computation was needed. Hence, the MD5 code could
be removed as well. Over 500 lines of code vanished by this one change.

26 Markus Schnalke: The Modern Mail Handler

MMDF maildrop support

This type of maildrop format is conceptionally similar to the mbox format, but uses a
di�erent message delimiter (‘\1\1\1\1’, commonly written as ‘ˆAˆAˆAˆA’, instead of
‘From ’). Mbox is the de-facto standard maildrop format on Unix, whereas the MMDF
maildrop format is now forgotten. Mbox remains as the only packed mailbox format,
supported in mmh.

The simpli�cations within the code were moderate. Mainly, the reading and writ-
ing of MMDF mailbox �les was removed. But also, switches of packf and rcvpack

could be removed [3916ab6]. In the message parsing function sbr/m_getfld.c,
knowledge of MMDF packed mail boxes was removed [684ec30]. Further code struc-
ture simpli�cations may be possible there, because only one single packed mailbox for-
mat is left to be supported. I have not worked on them yet because m_getfld() is
heavily optimized and thus dangerous to touch. The risk of damaging the intricate
workings of the optimized code is too high.

Prompter’s Control Keys

The program prompter queries the user to �ll in a message form. When used as ‘comp
–editor prompter’, the resulting behavior is similar to mailx. Apparently, prompter
had not been touched lately. Otherwise it’s hardly explainable why it still o�ered the
switches –erase chr and –kill chr to name the characters for command line editing.
The times when this had been necessary are long time gone. Today these things work
out-of-the-box, and if not, are con�gured with the standard tool stty. The switches are
removed now [0bd9750].

Hardcopy Terminal Support

More of a funny anecdote is a check for being connected to a hardcopy terminal. It
remained in the code until spring 2012, when I �nally removed it [b7764c4].

The check only prevented a pager to be placed between the printing program
(mhl) and the terminal. In nmh, this could have been ensured statically with the –

nomoreproc at the command line, too. In mmh, setting the pro�le entry Pager or the
environment variable PAGER to cat is su�cient.

2.2.2 Attachments

The mind model of email attachments is unrelated to MIME. Although the MIME RFCs
[RFC 2045–2049] de�ne the technical requirements for having attachments, they do not
mention the term. Instead of attachments, MIME talks about ‘‘multi-part message
bodies’’ [RFC 2045], a more general concept. Multi-part messages are messages ‘‘in
which one or more di�erent sets of data are combined in a single body’’ [RFC 2046].
MIME keeps its descriptions generic; it does not imply speci�c usage models. Today,
one usage model is prevalent: attachments. The idea is having a main text document
with �les of arbitrary kind attached to it. In MIME terms, this is a multi-part message
having a text part �rst and parts of arbitrary type following.

MH’s MIME support is a direct implementation of the RFCs. The perception of the
topic described in the RFCs is clearly visible in MH’s implementation. As a result, MH
had all the MIME features but no idea of attachments. But users do not need all the

Chapter 2 Discussion 27

MIME features, they want convenient attachment handling.

Composing MIME Messages

In order to improve the situation on the message composing side, Jon Steinhart had
added an attachment system to nmh in 2002 [7480dbc]. In the �le docs/README–

ATTACHMENTS, he described his motivation to do so:

Although nmh contains the necessary functionality for MIME message

handing [sic!], the interface to this functionality is pretty obtuse. There’s no

way that I’m ever going to convince my partner to write mhbuild composi-

tion �les!

With this change, the mind model of attachments entered nmh. In the same document:

These changes simplify the task of managing attachments on draft �les.

They allow attachments to be added, listed, and deleted. MIME messages

are automatically created when drafts with attachments are sent.

Unfortunately, the attachment system, like every new facilities in nmh, was inactive by
default.

During my time in Argentina, I tried to improve the attachment system. But, after
long discussions my patch died as a proposal on the mailing list because of great oppo-
sition in the nmh community [mail: attach]. In January 2012, I extended the patch and
applied it to mmh [8ff284f]. In mmh, the attachment system is active by default.
Instead of command line switches, the Attachment–Header pro�le entry is used to
specify the name of the attachment header �eld. It is pre-de�ned to Attach:.

To add an attachment to a draft, a header line needs to be added:

To: bob

Subject: The file you wanted

Attach: /path/to/the/file–bob–wanted

––––––––

Here it is.

The header �eld can be added to the draft manually in the editor, or by using the
‘attach’ command at the WhatNow prompt, or non-interactively with anno:

anno –append –nodate –component Attach –text /path/to/attachment

Drafts with attachment headers are converted to MIME automatically by send. The
conversion to MIME is invisible to the user. The draft stored in the draft folder is
always in source form with attachment headers. If the MIMEi�cation fails (e.g. because
the �le to attach is not accessible) the original draft is not changed.

The attachment system handles the forwarding of messages, too. If the attachment
header value starts with a plus character (‘+’), like in ‘Attach: +bob 30 42’, the given
messages in the speci�ed folder will be attached. This allowed to simplify forw

[f41f04c].

Closely related to attachments is non-ASCII text content, because it requires MIME
as well. In nmh, the user needed to call ‘mime’ at the WhatNow prompt to have the
draft converted to MIME. This was necessary whenever the draft contained non-ASCII

28 Markus Schnalke: The Modern Mail Handler

characters. If the user did not call ‘mime’, a broken message would be sent. Therefore,
the automimeproc pro�le entry could be speci�ed to have the ‘mime’ command
invoked automatically each time. Unfortunately, this approach con�icted with the
attachment system because the draft would already be in MIME format at the time
when the attachment system wanted to MIMEify it. To use nmh’s attachment system,
‘mime’ must not be called at the WhatNow prompt and automimeproc must not be set
in the pro�le. But then the case of non-ASCII text without attachment headers was not
caught. All in all, the solution was complex and irritating. My patch from December
2010 [mail: attach] would have simpli�ed the situation.

Mmh’s current solution is even more elaborate. Any necessary MIMEi�cation is
done automatically. There is no ‘mime’ command at the WhatNow prompt anymore.
The draft will be converted automatically to MIME when either an attachment header
or non-ASCII text is present. Furthermore, the hash character (‘#’) is not special any
more at line beginnings in the draft message. Users need not concern themselves with
the whole topic at all.

Although the new approach does not anymore support arbitrary MIME composi-
tions directly, the full power of mhbuild can still be accessed. Given no attachment
headers are included, users can create mhbuild composition drafts like in nmh. Then,
at the WhatNow prompt, they can invoke ‘edit mhbuild’ to convert the draft to
MIME. Because the resulting draft neither contains non-ASCII characters nor has it
attachment headers, the attachment system will not touch it.

The approach taken in mmh is tailored towards today’s most common case: a text
part, possibly with attachments. This case was simpli�ed.

MIME Type Guessing

From the programmer’s point of view, the use of mhbuild composition drafts had one
notable advantage over attachment headers: The user provides the appropriate MIME
types for �les to include. The new attachment system needs to �nd out the correct
MIME type itself. This is a di�cult task. Determining the correct MIME type of content
is partly mechanical, partly intelligent work. Forcing the user to �nd out the correct
MIME type, forces him to do partly mechanical work. Letting the computer do the
work can lead to bad choices for di�cult content. For mmh, the latter option was
chosen to spare the user the work [3baec23].

Determining the MIME type by the su�x of the �le name is a dumb approach, yet
it is simple to implement and provides good results for the common cases. If no MIME
type can be determined, text content is sent as ‘text/plain’, anything else under the
generic fall-back type ‘application/octet-stream’. Mmh implements this approach in the
print–mimetype script [4b59442].

A far better, though less portable, approach is the use of file. This standard tool
tries to determine the type of �les. Unfortunately, its capabilities and accuracy varies
from system to system. Additionally, its output was only intended for human beings,
but not to be used by programs. Nevertheless, modern versions of GNU file, which
are prevalent on the popular GNU/Linux systems, provide MIME type output in
machine-readable form. Although this solution is system-dependent, it solves the
di�cult problem well. On systems where GNU file, version 5.04 or higher, is available

Chapter 2 Discussion 29

it should be used. One needs to specify the following pro�le entry to do so:

Mime–Type–Query: file –b ––mime

Other versions of file might possibly be usable with wrapper scripts that reformat the
output. The diversity among file implementations is great; one needs to check the
local variant.

It is not possible in mmh to override the automatic MIME type guessing for a
speci�c �le. To do so, either the user would need to know in advance for which �le the
automatic guessing fails or the system would require interaction. I consider both cases
impractical. The existing solution should be su�cient. If not, the user may always fall
back to mhbuild composition drafts and bypass the attachment system.

Storing Attachments

Extracting MIME parts of a message and storing them to disk is performed by mhstore.
The program has two operation modes, –auto and –noauto. With the former one, each
part is stored under the �lename given in the MIME part’s meta information, if avail-
able. This naming information is usually available for modern attachments. If no
�lename is available, this MIME part is stored as if –noauto would have been speci�ed.
In the –noauto mode, the parts are processed according to rules, de�ned by mhstore–

store–* pro�le entries. These rules de�ne generic �lename templates for storing or
commands to post-process the contents in arbitrary ways. If no matching rule is avail-
able the part is stored under a generic �lename, built from message number, MIME part
number, and MIME type.

The –noauto mode had been the default in nmh because it was considered safe, in
contrast to the –auto mode. In mmh, –auto is not dangerous anymore. Two changes
were necessary:

1. Any directory path is removed from the proposed �lename. Thus, the �les are
always stored in the expected directory. [41b6ead]

2. Tar �les are not extracted automatically any more. Thus, the rest of the �le
system will not be touched. [94c8004]

In mmh, the result of ‘mhstore –auto’ can be foreseen from the output of
‘mhlist –verbose’. Although the –noauto mode is considered to be more powerful, it
is less convenient and –auto is safe now. Additionally, storing attachments under their
original name is intuitive. Hence, –auto serves better as the default option
[3410b68].

Files are stored into the directory given by the Nmh–Storage pro�le entry, if set,
or into the current working directory, otherwise. Storing to di�erent directories is only
possible with mhstore–store–* pro�le entries.

Still existing �les get overwritten silently in both modes. This can be considered a
bug. Yet, each other behavior has its draw-backs, too. Refusing to replace �les requires
adding a –force switch. Users will likely need to invoke mhstore a second time with
–force. Eventually, only the user can decide in the speci�c case. This requires interac-
tion, which I like to avoid if possible. Appending a unique su�x to the �lename is
another bad option. For now, the behavior remains as it is.

30 Markus Schnalke: The Modern Mail Handler

In mmh, only MIME parts of type message are special in mhstore’s –auto mode.
Instead of storing message/rfc822 parts as �les to disk, they are stored as messages into
the current mail folder. The same applies to message/partial, although the parts are
automatically reassembled beforehand. MIME parts of type message/external-body are
not automatically retrieved anymore. Instead, information on how to retrieve them is
output. Not supporting this rare case saved nearly one thousand lines of code
[55e1d8c]. The MIME type ‘application/octet-stream; type=tar’ is not special
anymore. The automatically extracting of such MIME parts had been the dangerous
part of the –auto mode [94c8004].

Showing MIME Messages

The program mhshow was written to display MIME messages. It implemented the con-
ceptional view of the MIME RFCs. Nmh’s mhshow handles each MIME part indepen-
dently, presenting them separately to the user. This does not match today’s understand-
ing of email attachments, where displaying a message is seen to be a single, integrated
operation. Today, email messages are expected to consist of a main text part plus possi-
bly attachments. They are no more seen to be arbitrary MIME hierarchies with infor-
mation on how to display the individual parts. I adjusted mhshow’s behavior to the
modern view on the topic.

One should note that this section completely ignores the original show program,
because it was not capable to display MIME messages and is no longer part of mmh
(cf. Sec. 2.1.3). Although mhshow was renamed to show in mmh, this section uses the
name mhshow, in order to avoid confusion.

In mmh, the basic idea is that mhshow should display a message in one single
pager session. Therefore, mhshow invokes a pager session for all its output, whenever it
prints to a terminal [a4197ea]. In consequence, mhl does no more invoke a pager
[0e46503]. With mhshow replacing the original show, the output of mhl no longer
goes to the terminal directly, but through mhshow. Hence, mhl does not need to invoke
a pager. The one and only job of mhl is to format messages or parts of them. The only
place in mmh, where a pager is invoked is mhshow.

Only text content is displayed. Other kinds of attachments are ignored. Non-text
content needs to be converted to text by appropriate mhshow–show–* pro�le entries
before, if this is possible and wanted. A common example for this are PDF �les.

MIME parts are always displayed serially. The request to display the MIME type
‘multipart/parallel’ in parallel is ignored. It is simply treated as ‘multipart/mixed’
[d0581ba]. This was already possible to requested with the, now removed, –

serialonly switch of mhshow. As MIME parts are always processed exclusively, i.e.
serially, the ‘%e’ escape in mhshow–show–* pro�le entries became useless and was thus
removed [a20d405]. For parallel display, the attachments need to be stored to disk
�rst.

To display text content in foreign charsets, they need to be converted to the native
charset. Therefore, mhshow–charset–* pro�le entries were needed. In mmh, the
conversion is performed automatically by piping the text through the iconv command,
if necessary [2433122]. Custom mhshow–show–* rules for textual content might need
a ‘iconv –f %c %f |’ pre�x to have the text converted to the native charset.

Chapter 2 Discussion 31

Although the conversion of foreign charsets to the native one has improved, it is
not consistent enough. Further work needs to be done and the basic concepts in this
�eld need to be re-thought. Though, the default setup of mmh displays message in
foreign charsets correctly without the need to con�gure anything.

2.2.3 Signing and Encrypting

Nmh o�ers no direct support for digital signatures and message encryption. This func-
tionality needed to be added through third-party software. In mmh, the functionality is
included because it is a part of modern email and is likely wanted by users of mmh. A
fresh mmh installation supports signing and encrypting out-of-the-box. Therefore, Neil
Rickert’s mhsign and mhpgp scripts [web: rickert] were included [f45cdc9]
[58cf09a]. The scripts �t well because they are lightweight and similar of style to
the existing tools. Additionally, no licensing di�culties appeared as they are part of the
public domain.

mhsign handles the signing and encrypting part. It comprises about 250 lines of
shell code and interfaces between gnupg and the MH system. It was meant to be
invoked manually at the WhatNow prompt, but in mmh, send invokes mhsign

automatically [c7b5e1d]. Special header �elds were introduced to request this action.
If a draft contains the Sign: header �eld, send will initiate the signing. The signing
key is either chosen automatically or it is speci�ed by the Pgpkey pro�le entry. send
always create signatures using the PGP/MIME standard [RFC 4880], but by invoking
mhsign manually, old-style non-MIME signatures can be created as well. To encrypt an
outgoing message, the draft needs to contain an Enc: header �eld. Public keys of all
recipients are searched for in the gnupg keyring and in a �le called pgpkeys, which
contains exceptions and overrides. Unless public keys are found for all recipients,
mhsign will refuse to encrypt it. Currently, messages with hidden (BCC) recipients can
not be encrypted. This work is pending because it requires a structurally more complex
approach.

mhpgp is the companion to mhsign. It veri�es signatures and decrypts messages.
Encrypted messages can be either temporarily decrypted and displayed or permanently
decrypted and stored into the current folder. Currently, mhpgp needs to be invoked
manually. The integration into show and mhstore to verify signatures and decrypt mes-
sages as needed is planned but not yet realized.

Both scripts were written for nmh. Hence they needed to be adjust according to
the di�erences between nmh and mmh. For instance, they use the backup pre�x no
longer. Furthermore, compatibility support for old PGP features was dropped.

The integrated message signing and encrypting support is one of the most recent
features in mmh. It has not had the time to mature. User feedback and personal experi-
ence need to be accumulated to direct the further development of the facility. Already
it seems to be worthwhile to consider adding –[no]sign and –[no]enc switches to
send, to be able to override the corresponding header �elds. A pro�le entry:

send: –sign

would then activate signing for all outgoing messages. With the present approach, a
Send: header component needs to be added to each draft template to achieve the same
result. Adding the switches would ease the work greatly and keep the template �les

32 Markus Schnalke: The Modern Mail Handler

clean.

2.2.4 Draft and Trash Folder

Draft Folder

In the beginning, MH had the concept of a draft message. This was a �le named draft

in the MH directory, which was treated special. On composing a message, this draft �le
was used. When starting to compose another message before the former one was sent,
the user had to decide among:

1. Using the old draft to �nish and send it before starting with a new one.

2. Discarding the old draft and replacing it with a new one.

3. Preserving the old draft by re�ling it to a folder.

Working on multiple drafts was only possible in alternation. For that, the current draft
needed to be re�led to a folder and another one re-used for editing. Working on multi-
ple drafts at the same time was impossible. The usual approach of switching to a
di�erent MH context did not help anything.

The draft folder facility exists to allow true parallel editing of drafts, in a straight
forward way. It was introduced by Marshall T. Rose, already in 1984. Similar to other
new features, the draft folder was inactive by default. Even in nmh, the highly useful
draft folder was not available out-of-the-box. At least, Richard Coleman added the man
page mh-draft (5) to better document the feature.

Not using the draft folder facility has the single advantage of having the draft �le
at a static location. This is simple in simple cases but the concept does not scale for
more complex cases. The concept of the draft message is too limited for the problem it
tries to solve. Therefore the draft folder was introduced. It is the more powerful and
more natural concept. The draft folder is a folder like any other folder in MH. Its mes-
sages can be listed like any other messages. A draft message is no longer a special case.
Tools do not need special switches to work on the draft message. Hence corner cases
were removed.

The trivial part of the work was activating the draft folder with a default name. I
chose the name +drafts, for obvious reasons. In consequence, the command line
switches –draftfolder and –draftmessage could be removed. More di�cult but also
more improving was updating the tools to the new concept. For nearly three decades,
the tools needed to support two draft handling approaches. By fully switching to the
draft folder, the tools could be simpli�ed by dropping the awkward draft message han-
dling code. –draft switches were removed because operating on a draft message is no
longer special. It became indistinguishable to operating on any other message.
[337338b]

There is no more need to query the user for draft handling [2d48b45]. It is
always possible to add another new draft. Re�ling drafts is without di�erence to re�l-
ing other messages. All of these special cases are gone. Yet, one draft-related switch
remained. comp still has –[no]use for switching between two modes:

1. Modifying an existing draft, with –use.

Chapter 2 Discussion 33

2. Composing a new draft, possibly taking some existing message as template,
with –nouse, the default.

In either case, the behavior of comp is deterministic.

send now operates on the current message in the draft folder by default. As mes-
sage and folder can both be overridden by specifying them on the command line, it is
possible to send any message in the mail storage by simply specifying its number and
folder. In contrast to the other tools, send takes the draft folder as its default folder.

Dropping the draft message concept in favor for the draft folder concept, replaced
special cases with regular cases. This simpli�ed the source code of the tools, as well as
the concepts. In mmh, draft management does not break with the MH concepts but
applies them. ‘scan +drafts’, for instance, is a truly natural request.

Most of the work was already performed by Rose in the eighties. The original
improvement of mmh is dropping the old draft message approach and thus simplifying
the tools, the documentation, and the system as a whole. Although my part in the draft
handling improvement was small, it was important.

Trash Folder

Similar to the situation for drafts is the situation for removed messages. Historically, a
message was ‘‘deleted’’ by prepending a speci�c backup pre�x, usually the comma
character, to the �le name. The speci�c �le would then be ignored by MH because only
�les with names consisting of digits only are treated as messages. Although �les
remained in the �le system, the messages were no longer visible in MH. To truly delete
them, a maintenance job was needed. Usually a cron job was installed to delete them
after a grace time. For instance:

find $HOME/Mail –type f –name ´,*´ –ctime +7 –delete

In such a setup, the original message could be restored within the grace time interval
by stripping the backup pre�x from the �le name – usually but not always. If the last
message of a folder with six messages (1–6) was removed, message 6, became �le ,6. If
then a new message entered the same folder, it would be named with the number one
above the highest existing message number. In this case the message would be named
6, reusing the number. If this new message would be removed as well, then the backup
of the former message becomes overwritten. Hence, the ability to restore removed mes-
sages did not only depend on the sweeping cron job but also on the removing of
further messages. It is undesirable to have such obscure and complex mechanisms. The
user should be given a small set of clear assertions, such as ‘‘Removed �les are restor-
able within a seven-day grace time.’’ With the addition ‘‘... unless a message with the
same name in the same folder is removed before.’’ the statement becomes complex. A
user will hardly be able to keep track of all removals to know if the assertion still
holds true for a speci�c �le. In practice, the real mechanism is unclear to the user.

Furthermore, the backup �les were scattered within the whole mail storage. This
complicated managing them. It was possible with the help of find, but everything is
more convenient if the deleted messages are collected in one place.

The pro�le entry rmmproc (previously named Delete–Prog) was introduced very
early to improve the situation. It could be set to any command, which would be

34 Markus Schnalke: The Modern Mail Handler

executed to remove the speci�ed messages. This had overridden the default action,
described above. Re�ling the to-be-removed �les to a trash folder was the usual exam-
ple. Nmh’s man page rmm (1) proposes to set the rmmproc to ‘refile +d’ to move
messages to the trash folder +d instead of renaming them with the backup pre�x. The
man page additionally proposes the expunge command ‘rm `mhpath +d all`’ to
empty the trash folder.

Removing messages in such a way has advantages:

1. The mail storage is prevented from being cluttered with removed messages
because they are all collected in one place. Existing and removed messages
are thus separated more strictly.

2. No backup �les are silently overwritten.

3. Most important, however, removed messages are kept in the MH domain.
Messages in the trash folder can be listed like those in any other folder.
Deleted messages can be displayed like any other messages. refile can
restore deleted messages. All operations on deleted �les are still covered by
the MH tools. The trash folder is just like any other folder in the mail
storage.

Similar to the draft folder case, I dropped the old backup pre�x approach in favor
for replacing it by the better suiting trash folder system. Hence, rmm calls refile to
move the to-be-removed message to the trash folder, +trash by default. To sweep it
clean, the user can use ‘rmm –unlink +trash a’, where the –unlink switch causes the
�les to be unlinked. [8edc5aa] [ca0b3e8]

Dropping the legacy approach and converting to the new approach completely,
simpli�ed the code base. The relationship between rmm and refile was inverted. In
mmh, rmm invokes refile. That used to be the other way round. Yet, the relationship
is simpler now. Loops, like described in nmh’s man page for re�le (1), can no longer
occur:

Since refile uses your rmmproc to delete the message, the rmmproc must

NOT call refile without specifying –normmproc or you will create an

in�nite loop.

rmm either unlinks a message with unlink() or invokes refile to move it to the trash
folder. refile does not invoke any tools.

By generalizing the message removal in the way that it became covered by the
MH concepts made the whole system more powerful.

2.2.5 Modern Defaults

Nmh has a bunch of convenience-improving features inactive by default, although one
can expect every new user to want them active. The reason they are inactive by default
is the wish to stay compatible with old versions. But what are old versions? Still, the
highly useful draft folder facility has not been activated by default although it was
introduced over twenty-�ve years ago [Rose85]. The community seems not to care.

In nmh, new users are required to �rst build up a pro�le before they can access
the modern features. Without an extensive pro�le, the setup is hardly usable for
modern emailing. The point is not the customization of the setup, but the need to

Chapter 2 Discussion 35

activate generally useful facilities. Yet, the real problem lies less in enabling the
features, as this is straight forward as soon as one knows what he wants. The real
problem is that new users need deep insight into the project to discover the available
but inactive features. To give an example, I needed one year of using nmh before I
became aware of the existence of the attachment system. One could argue that this fact
disquali�es my reading of the documentation. If I would have installed nmh from
source back then, I could agree. Yet, I had used a pre-packaged version and had
expected that it would just work. Nevertheless, I had been convinced by the concepts
of MH already and I am a software developer, still I required a lot of time to discover
the cool features. How can we expect users to be even more advanced than me, just to
enable them to use MH in a convenient and modern way? Unless they are strongly
convinced of the concepts, they will fail. I have seen friends of me giving up disap-
pointed before they truly used the system, although they had been motivated in the
beginning. New users su�er hard enough to get used to the tool chest approach, we
developers should spare them further inconveniences.

Maintaining compatibility for its own sake is bad, because the code base will col-
lect more and more compatibility code. Sticking to the compatibility code means
remaining limited; whereas adjusting to the changes renders the compatibility unneces-
sary. Keeping unused alternatives in the code for longer than a short grace time is a
bad choice as they likely gather bugs by not being constantly tested. Also, the
increased code size and the greater number of conditions increase the maintenance
costs. If any MH implementation would be the back-end of widespread email clients
with large user bases, compatibility would be more important. Yet, it appears as if this
is not the case. Hence, compatibility is hardly important for technical reasons. Its
importance originates from personal reasons rather. Nmh’s user base is small and old.
Changing the interfaces causes inconvenience to long-term users of MH. It forces them
to change their many years old MH con�gurations. I do understand this aspect, but by
sticking to the old users, new users are kept from entering the world of MH. But the
future lies in new users. In consequence, mmh invites new users by providing a con-
venient and modern setup, readily usable out-of-the-box.

In mmh, all modern features are active by default and many previous approaches
are removed or only accessible in a manual way. New default features include:

• The attachment system (Attach:) [8ff284f].

• The draft folder facility (+drafts) [337338b].

• The unseen sequence (‘u’) [c236056] and the sequence negation pre�x (‘!’)
[db74c2b].

• Quoting the original message in the reply [67411b1].

• Forwarding messages using MIME [6e27160].

An mmh setup with a pro�le that de�nes only the path to the mail storage, is already
convenient to use. Again, Paul Vixie’s supports the direction I took: ‘‘the ‘main branch’
should just be modern’’ [mail: edginess].

36 Markus Schnalke: The Modern Mail Handler

2.3 STYLING

Kernighan and Pike have emphasized the importance of style in the preface of The
Practice of Programming [Kernighan99, p. x]:

Chapter 1 discusses programming style. Good style is so important to good

programming that we have chosen to cover it �rst.

This section covers changes in mmh that were guided by the desire to improve on
style. Many of them follow the advice given in the quoted book.

2.3.1 Code Style

Indentation Style

Indentation styles are the holy cow of programming. Kernighan and Pike write [Ker-
nighan99, p. 10]:

Programmers have always argued about the layout of programs, but the

speci�c style is much less important than its consistent application. Pick

one style, preferably ours, use it consistently, and don’t waste time arguing.

I agree that the constant application is most important, but I believe that some
styles have advantages over others. For instance the indentation with tab characters
only. The number of tabs corresponds to the nesting level – one tab, one level. Tab
characters provide �exible visual appearance because developers can adjust their width
as preferred. There is no more need to check for the correct mixture of tabs and
spaces. Two simple rules ensure the integrity and �exibility of the visual appearance:

1. Leading whitespace must consist of tabs only.

2. All other whitespace should be spaces.

Although reformatting existing code should be avoided, I did it. I did not waste time
arguing; I just reformatted the code. [a485ed4]

Comments

Kernighan and Pike demand: ‘‘Don’t belabor the obvious’’ [Kernighan99, p. 23]. Follow-
ing the advice, I removed unnecessary comments. For instance, I removed all comments
in the following code excerpt [4265436]:

Chapter 2 Discussion 37

context_replace(curfolder, folder); /* update current folder */

seq_setcur(mp, mp–>lowsel); /* update current message */

seq_save(mp); /* synchronize message sequences */

folder_free(mp); /* free folder/message structure */

context_save(); /* save the context file */

[...]

int c; /* current character */

char *cp; /* miscellaneous character pointer */

[...]

/* NUL–terminate the field */

*cp = ´\0´;

The information in each of the comments was present in the code statements
already, except for the NUL-termination, which became obvious from the context.

Names

Regarding this topic, Kernighan and Pike suggest: ‘‘Use active names for functions’’
[Kernighan99, p. 4]. One application of this rule was the rename of check_charset()

to is_native_charset() [8d77b48]. The same change additionally �xed a violation
of ‘‘Be accurate’’ [Kernighan99, p. 4], as the code did not match the expectation the
function suggested. It did not compare charset names but pre�xes of them only. In case
the native charset was ‘ISO-8859-1’, then

check_charset("ISO–8859–11", strlen("ISO–8859–11"))

had returned true although the upper halves of the code pages are di�erent.

More important than using active names is using descriptive names.

m_unknown(in); /* the MAGIC invocation... */

Renaming the obscure m_unknown() function was a delightful event, although it made
the code less funny [611d68d].

Magic numbers are generally considered bad style. Obviously, Kernighan and Pike
agree: ‘‘Give names to magic numbers’’ [Kernighan99, p. 19].

The argument outnum of the function scan() in uip/scansbr.c holds the number
of the message to be created. As well it encodes program logic with negative numbers
and zero. This led to obscure code. I clari�ed the code by introducing two variables
that extracted the hidden information:

int incing = (outnum > 0);

int ismbox = (outnum != 0);

The readable names are thus used in conditions; the variable outnum is used only to
extract ordinary message numbers [b8b075c].

38 Markus Schnalke: The Modern Mail Handler

Through the clarity improvement of the change detours in the program logic of
related code parts became apparent. The implementation was simpli�ed. This possibil-
ity to improve had been invisible before [aa60b0a].

The names just described were a �rst step, yet the situation was further improved
by giving names to the magic values of outnum:

#define SCN_MBOX (–1)

#define SCN_FOLD 0

The two variables were updated thereafter as well:

int incing = (outnum != SCN_MBOX && outnum != SCN_FOLD);

int scanfolder = (outnum == SCN_FOLD);

Furthermore, ismbox was replaced by scanfolder because that matched better to the
program logic. [7ffb36d]

2.3.2 Structural Rework

Although the stylistic changes described already improve the readability of the source
code, all of them were changes ‘‘in the small’’. Structural changes, in contrast, a�ect
much larger code areas. They are more di�cult to accomplish but lead to larger
improvements, especially as they often in�uence the outer shape of the tools as well.

At the end of their chapter on style, Kernighan and Pike ask: ‘‘But why worry
about style?’’ [Kernighan99, p. 28]. Following are two examples of structural rework
that demonstrate why style is important in the �rst place.

Rework of anno

Until 2002, anno had six functional command line switches: –component and –text,
each with an argument, and the two pairs of �ags, –[no]date and –[no]inplace.
Then Jon Steinhart introduced his attachment system. In need for more advanced anno-
tation handling, he extended anno. He added �ve more switches: –draft, –list, –

delete, –append, and –number, the last one taking an argument [7480dbc]. Later, –
[no]preserve was added as well [d9b1d57]. Then, the Synopsis section of the man
page anno (1) read:

anno [+folder] [msgs] [–component field] [–inplace | –noinplace]

[–date | –nodate] [–draft] [–append] [–list] [–delete]

[–number [num|all]] [–preserve | –nopreserve] [–version]

[–help] [–text body]

The implementation followed the same structure. Problems became visible when ‘anno
–list –number 42’ worked on the current message instead of on message number 42,
and ‘anno –list –number l:5’ did not work on the last �ve messages but failed with
the mysterious error message: ‘‘anno: missing argument to -list’’. Yet, the invocation
matched the speci�cation in the man page. There, the correct use of –number was
de�ned as being ‘[–number [num|all]]’ and the textual description for the combina-
tion with –list read:

Chapter 2 Discussion 39

The –list option produces a listing of the �eld bodies for header �elds

with names matching the speci�ed component, one per line. The listing is

numbered, starting at 1, if the –number option is also used.

The problem was manifold. Semantically, the argument to the –number switch is only
necessary in combination with –delete, but not with –list. The code, however,
required a numeric argument in any case. If the argument was missing or non-numeric,
anno aborted with an error message that additionally had an o�-by-one error. It printed
the name of the switch one before the concerned one.

Trying to �x these problems on the surface would not have solved them. They ori-
ginate from a discrepance between the structure of the problem and the structure
implemented in the program. Such structural di�erences can only be solved by adjust-
ing the structure of the implementation to the structure of the problem.

Steinhart had added the new –list and –delete switches in a style similar to the
other switches though they are of structural di�erent type. Semantically, –list and –

delete introduce operation modes. Historically, anno had only one operation mode:
adding header �elds. With the extension, two more modes were added: listing and
deleting header �elds. The structure of the code changes did not pay respect to this
fundamental change. Neither the implementation nor the documentation did clearly
declare the exclusive operation modes as such. Having identi�ed the problem, I solved
it by putting structure into anno and its documentation [d54c8db].

The di�erence is visible in both the code and the documentation. For instance in
the following code excerpt:

int delete = –2; /* delete header element if set */

int list = 0; /* list header elements if set */

[...]

case DELETESW: /* delete annotations */

delete = 0;

continue;

case LISTSW: /* produce a listing */

list = 1;

continue;

which was replaced by:

static enum { MODE_ADD, MODE_DEL, MODE_LIST } mode = MODE_ADD;

[...]

case DELETESW: /* delete annotations */

mode = MODE_DEL;

continue;

case LISTSW: /* produce a listing */

mode = MODE_LIST;

continue;

The replacement code does not only re�ect the problem’s structure better, it is easier to
understand as well. The same applies to the documentation. The man page was com-
pletely reorganized to propagate the same structure. This is already visible in the

40 Markus Schnalke: The Modern Mail Handler

Synopsis section:

anno [+folder] [msgs] [–component field] [–text body]

[–append] [–date | –nodate] [–preserve | –nopreserve]

[–Version] [–help]

anno –delete [+folder] [msgs] [–component field] [–text

body] [–number num | all] [–preserve | –nopreserve]

[–Version] [–help]

anno –list [+folder] [msgs] [–component field] [–number]

[–Version] [–help]

Path Conversion

Four kinds of path names can appear in MH:

1. Absolute Unix directory paths, like /etc/passwd.

2. Relative Unix directory paths, like ./foo/bar.

3. Absolute MH folder paths, like +projects/mmh.

4. Relative MH folder paths, like @subfolder.

Relative MH folder paths, are hardly documented although they are useful for large
mail storages. The current mail folder is speci�ed as ‘@’, just like the current directory
is speci�ed as ‘.’.

To allow MH tools to understand all four notations, they need to be able to con-
vert between them. In nmh, these path name conversion functions were located in the
�les sbr/path.c (‘‘return a pathname’’) and sbr/m_maildir.c (‘‘get the path for the
mail directory’’). The seven functions in the two �les were documented with no more
than two comments, which described obvious information. The signatures of the four
exported functions did not explain their semantics:

1. char *path(char *, int);

2. char *pluspath(char *);

3. char *m_mailpath(char *);

4. char *m_maildir(char *);

My investigations provided the following descriptions:

1. The second parameter of path() de�nes the type as which the path given in
the �rst parameter should be treated. Directory paths are converted to abso-
lute directory paths. Folder paths are converted to absolute folder paths.
Folder paths must not include a leading ‘@’ character. Leading plus characters
are preserved. The result is a pointer to newly allocated memory.

2. pluspath() is a convenience-wrapper to path(), to convert folder paths
only. This function can not be used for directory paths. An empty string
parameter causes a bu�er over�ow.

3. m_mailpath() converts directory paths to absolute directory paths. The char-
acters ‘+’ or ‘@’ at the beginning of the path name are treated literal, i.e. as

Chapter 2 Discussion 41

the �rst character of a relative directory path. Hence, this function can not be
used for folder paths. In any case, the result is an absolute directory path,
returned as a pointer to newly allocated memory.

4. m_maildir() returns the parameter unchanged if it is an absolute directory
path or begins with the entry ‘.’ or ‘..’. All other strings are prepended with
the current working directory. Hence, this function can not be used for folder
paths. The result is either an absolute directory path or a relative directory
path, starting with dot or dot-dot. In contrast to the other functions, the
result is a pointer to static memory.

The situation was obscure, irritating, error-prone, and non-orthogonal. Addition-
ally, no clear terminology was used to name the di�erent kinds of path names. Some-
times, the names were even misleading, much as the �rst argument of m_mailpath(),
which was named folder, although m_mailpath() could not be used with MH folder
arguments.

I clari�ed the path name conversion by complete rework. First of all, the terminol-
ogy needed to be de�ned. A path name is either in the Unix domain, then it is called
directory path or it is in the MH domain, then it is called folder path. The two terms
need to be used with strict distinction. Second, I exploited the concept of path type
indicators. By requiring every path name to start with a distinct type identi�er, the
conversion between the types could be fully automated. This allows the tools to accept
path names of any type from the user. Therefore, it was necessary to require relative
directory paths to be pre�xed with a dot character. In consequence, the dot character
could no longer be an alias for the current message [cff0e16]. Third, I created three
new functions to replace the previous mess:

1. expandfol() converts folder paths to absolute folder paths. Directory paths
are simply passed through. This function is to be used for folder paths only,
thus the name. The result is a pointer to static memory.

2. expanddir() converts directory paths to absolute directory paths. Folder
paths are treated as relative directory paths. This function is to be used for
directory paths only, thus the name. The result is a pointer to static memory.

3. toabsdir() converts any type of path to an absolute directory path. This is
the function of choice for path conversion. Absolute directory paths are the
most general representation of a path name. The result is a pointer to static
memory.

The new functions have names that indicate their use. Two of the functions con-
vert relative to absolute path names of the same type. The third function converts any
path name type to the most general one, the absolute directory path. All of the func-
tions return pointers to static memory. The �le sbr/path.c contains the implementa-
tion of the functions; sbr/m_maildir.c was removed. [d39e2c4]

Along with the path conversion rework, I also replaced getfolder(FDEF) with
getdeffol() and getfolder(FCUR) with getcurfol(), which only wraps expand-

fol("@") for convenience. This code was moved from sbr/getfolder.c into
sbr/path.c as well. [d39e2c4]

42 Markus Schnalke: The Modern Mail Handler

The related function etcpath() is now included in sbr/path.c, too [b4c2979].
Previously, it had been located in config/config.c.

Now, sbr/path.c contains all path handling code. Besides being less code, its rea-
dability is highly improved. The functions follow a common style and are well docu-
mented.

2.3.3 Pro�le Reading

The MH pro�le contains the con�guration of a user-speci�c MH setup. MH tools read
the pro�le right after starting up because it contains the location of the user’s mail
storage and similar settings that in�uence the whole setup. Furthermore, the pro�le
contains the default switches for the tools as well. The context �le is read along with
the pro�le.

For historic reasons, some MH tools did not read the pro�le and context. Among
them were post/spost, mhmail, and slocal. The reason why these tools ignored the
pro�le were not clearly stated. During a discussion on the nmh-workers mailing list,
David Levine posted an explanation, quoting John Romine [mail: levine]:

I asked John Romine and here’s what he had to say, which agrees and pro-

vides an example that convinces me:

My take on this is that post should not be called by users

directly, and it doesn’t read the .mh_profile (only front-end

UI programs read the pro�le).

For example, there can be contexts where post is called

by a helper program (like ‘mhmail’) which may be run by a

non-MH user. We don’t want this to prompt the user to

create an MH pro�le, etc.

My suggestion would be to have send pass a (hidden)

‘–fileproc proc’ option to post if needed. You could also

use an environment variable (I think send/whatnow do this).

I think that’s the way to go. My personal preference is to use a command

line option, not an environment variable.

To solve the problem that post does not honor the fileproc pro�le entry, the
community roughly agreed that a switch –fileproc should be added to post to be
able to pass a di�erent �leproc. I strongly disagree with this approach because it does
not solve the problem; it only removes a single symptom. The actual problem is that
post does not behave as expected, though all programs should behave as expected.
Clear and general concepts are a precondition for this. Thus, there should be no
separation into ‘‘front-end UI programs’’ and ones that ‘‘should not be called by users
directly’’. The real solution is having all MH tools read the pro�le.

But the problem has a further aspect, which originates from mhmail mainly.
mhmail was intended to be a replacement for mailx on systems with MH installations.
In di�erence to mailx, mhmail used MH’s post to send the message. The idea was that
using mhmail should not be in�uenced whether the user had MH set up for himself or
not. Therefore mhmail had not read the pro�le. As mhmail used post, post was not
allowed to read the pro�le neither. This is the reason for the actual problem. Yet, this
was not considered much of a problem because post was not intended to be used by

Chapter 2 Discussion 43

users directly. To invoke post, send was used an a front-end. send read the pro�le and
passed all relevant values on the command line to post – an awkward solution.

The important insight is that mhmail is a wolf in sheep’s clothing. This alien tool
broke the concepts because it was treated like a normal MH tool. Instead it should
have been treated accordingly to its foreign style.

The solution is not to prevent the tools from reading the pro�le but to instruct
them to read a di�erent pro�le. mhmail could have set up a well-de�ned pro�le and
caused the following post to use this pro�le by exporting an environment variable.
With this approach, no special cases would have been introduced and no surprises
would have been caused. By writing a wrapper program to provide a clean temporary
pro�le, the concept could have been generalized orthogonally to the whole MH tool
chest.

In mmh, the wish to have mhmail as a replacement for mailx is considered
obsolete. Mmh’s mhmail does no longer cover this use-case [d36e56e]. Currently,
mhmail is in a transition state [32d4f9d]. It may become a front-end to comp, which
provides an alternative interface which can be more convenient in some cases. This
would convert mhmail into an ordinary MH tool. If, however, this idea does not con-
vince, then mhmail will be removed.

In the mmh tool chest, every program reads the pro�le. (slocal is not considered
part of the mmh tool chest (cf. Sec. 2.1.2).) Mmh has no post program, but it has
spost, which now does read the pro�le [3e017a7]. Following this change, send and
spost can be considered for merging. Besides send, spost is only invoked directly by
the to-be-changed mhmail implementation and by rcvdist, which requires rework any-
way.

Je�rey Honig quoted Marshall T. Rose explaining the decision that post ignores
the pro�le [mail: honig]:

when you run mh commands in a script, you want all the defaults to be

what the man page says. when you run a command by hand, then you

want your own defaults...

The explanation neither matches the problem concerned exactly nor is the interpreta-
tion clear. If the described desire addresses the technical level, then it con�icts funda-
mentally with the Unix philosophy, precisely because the indistinquishability of human
and script input is the main reason for the huge software leverage in Unix. If, however,
the described desire addresses the user’s view, then di�erent technical solutions are
more appropriate. The two cases can be regarded simply as two di�erent MH setups.
Hence, mapping the problem of di�erent behavior between interactive and automated
use on the concept of switching between di�erent pro�les, marks it already solved.

2.3.4 Standard Libraries

MH is one decade older than the POSIX and ANSI C standards. Hence, MH included
own implementations of functions that were neither standardized nor widely available,
back then. Today, twenty years after POSIX and ANSI C were published, developers
can expect that systems comply with these standards. In consequence, MH-speci�c
replacements for standard functions can and should be dropped. Kernighan and Pike
advise: ‘‘Use standard libraries’’ [Kernighan99, p. 196]. Actually, MH had followed this

44 Markus Schnalke: The Modern Mail Handler

advice in history, but it had not adjusted to more recent changes in this �eld. The
snprintf() function, for instance, was standardized with C99 and is available almost
everywhere because of its high usefulness. Thus, the project’s own implementation of
snprintf() was dropped in March 2012 in favor for using the one of the standard
library [0052f10]. Such decisions limit the portability of mmh if systems do not sup-
port these standardized and widespread functions. This compromise is made because
mmh focuses on the future.

As I am still in my twenties, have no programming experience from past decades.
I have not followed the evolution of C through time. I have not su�ered from the the
Unix wars. I have not longed for standardization. All my programming experience is
from a time when ANSI C and POSIX were well established already. Thus, I needed to
learn about the history in retrospective. I have only read a lot of books about the
(good) old times. This put me in a di�cult position when working with old code. I
need to freshly acquire knowledge about old code constructs and ancient programming
styles, whereas older programmers know these things by heart from their own experi-
ence. Being aware of the situation, I rather let people with more historic experience do
the transition from ancient code constructs to standardized ones. Lyndon Nerenberg
covered large parts of this task for the nmh project. He converted project-speci�c func-
tions to POSIX replacements, also removing the conditionals compilation of now stand-
ardized features. Ken Hornstein and David Levine had their part in this work, as well.
Often, I only pulled the changes over from nmh into mmh. These changes include
many commits, among them: [768b5ed] [0052f10].

Nevertheless, I worked on the task as well, tidying up the MH standard library,
libmh.a. It is located in the sbr (‘‘subroutines’’) directory in the source tree and
includes functions that mmh tools usually need. Among them are MH-speci�c func-
tions for pro�le, context, sequence, and folder handling, but as well MH-independent
functions, such as auxiliary string functions, portability interfaces and error-checking
wrappers for critical functions of the standard library.

• I have replaced the atooi() function with calls to strtoul(), setting the
third parameter, the base, to eight. strtoul() is part of C89 and thus con-
sidered safe to use [c490c51].

• I did remove project-included fallback implementations of memmove() and
strerror() [b067ff5], although Peter Maydell had re-included them into
nmh in 2008 to support SunOS 4. Nevertheless, these functions are part of
ANSI C. Systems that do not even provide full ANSI C support should not
put a load on mmh.

• The copy() function copies the string in parameter one to the location in
parameter two. In contrast to strcpy(), it returns a pointer to the terminat-
ing null-byte in the destination area. The code was adjusted to replace
copy() with strcpy(), except within concat(), where copy() was more
convenient. Therefore, the de�nition of copy() was moved into the source
�le of concat() and its visibility it limited to that [552fd72].

• The function r1bindex() had been a generalized version of basename() with
minor di�erences. As all calls to r1bindex() had the slash (‘/’) as delimiter
anyway, replacing r1bindex() with the more speci�c and better-named

Chapter 2 Discussion 45

function basename() became desirable. Unfortunately, many of the 54 calls to
r1bindex() depended on a special behavior, which di�ered from the POSIX
speci�cation for basename(). Hence, r1bindex() was kept but renamed to
mhbasename(), setting the delimiter to the slash [2400138]. For possible
uses of r1bindex() with a di�erent delimiter, the ANSI C function
strrchr() provides the core functionality.

• The ssequal() function – apparently for ‘‘substring equal’’ – was renamed
to isprefix(), because this is what it actually checked [c20b4fa] Its
source �le had included both of the following comments, no joke.

/*

* THIS CODE DOES NOT WORK AS ADVERTISED.

* It is actually checking if s1 is a PREFIX of s2.

* All calls to this function need to be checked to see

* if that needs to be changed. Prefix checking is cheaper, so

* should be kept if it´s sufficient.

*/

/*

* Check if s1 is a substring of s2.

* If yes, then return 1, else return 0.

*/

Eventually, the function was completely replaced with calls to strncmp()

[b0b1dd3].

2.3.5 User Data Locations

In nmh, a personal setup consists of the MH pro�le and the MH directory. The pro�le
is a �le named .mh_profile in the user’s home directory. It contains the static
con�guration. It also contains the location of the MH directory in the pro�le entry
Path. The MH directory contains the mail storage and is the �rst place to search for
form �les, scan formats, and similar con�guration �les. The location of the MH direc-
tory can be chosen freely by the user. The usual name is a directory named Mail in
the user’s home directory.

The way MH data is split between pro�le and MH directory is a legacy. It is only
sensible in a situation where the pro�le is the only con�guration �le. Why else should
the mail storage and the con�guration �les be intermixed? They are of di�erent kind:
One kind is the data to be operated on and the other kind is the con�guration to
change how tools operate. Splitting the con�guration between the pro�le and the MH
directory is inappropriate, as well. I improved the situation by breaking compatibility.

In mmh, personal data is grouped by type. This results in two distinct parts: the
mail storage and the con�guration. The mail storage directory still contains all the
messages, but, in exception of public sequences �les, nothing else. In di�erence to nmh,
the auxiliary con�guration �les are no longer located there. Therefore, the directory is
no longer called the user’s MH directory but the user’s mail storage. Its location is still
user-chosen, with the default name Mail in the user’s home directory. The con�gura-
tion is grouped together in the hidden directory .mmh in the user’s home directory.

46 Markus Schnalke: The Modern Mail Handler

This mmh directory contains the context �le, personal forms, scan formats, and the like,
but also the user’s pro�le, now named profile. The path to the pro�le is no longer
$HOME/.mh_profile but $HOME/.mmh/profile. (The alternative of having �le
$HOME/.mh_profile and a con�guration directory $HOME/.mmh appeared to be incon-
sistent.)

The approach chosen for mmh is consistent, simple, and familiar to Unix users.
The main achievement of the change is the clear and sensible separation of the mail
storage and the con�guration. [7030d7e]

As MH allows users to have multiple MH setups, it is necessary to switch the
pro�le. The pro�le is the single entry point to access the rest of a personal MH setup.
In nmh, the environment variable MH is used to specify a di�erent pro�le. To operate in
the same MH setup with a separate context, the MHCONTEXT environment variable is
used. This allows having a separate current folder in each terminal at the same time,
for instance. In mmh, three environment variables replace the two of nmh. MMH over-
rides the default location of the mmh directory (.mmh). MMHP and MMHC override the
paths to the pro�le and context �le, respectively. This approach allows the set of per-
sonal con�guration �les to be chosen independently of the pro�le, context, and mail
storage. The new approach has no functional disadvantages, as every setup I can ima-
gine can be implemented with both approaches, possibly even easier with the new one.
[7030d7e]

2.3.6 Modularization

The source code of the mmh tools is located in the uip (‘‘user interface programs’’)
directory. Each tool has a source �le with the name of the command. For example, rmm
is built from uip/rmm.c. Some source �les are used for multiple programs. For example
uip/scansbr.c is used for both scan and inc. In nmh, 49 tools were built from 76

source �les. This is a ratio of 1.6 source �les per program. 32 programs depended on
multiple source �les; 17 programs depended on one source �le only. In mmh, 39 tools
are built from 51 source �les. This is a ratio of 1.3 source �les per program. 18 pro-
grams depend on multiple source �les; 21 programs depend on one source �le only.
(These numbers and the ones in the following text ignore the MH library as well as
shell scripts and multiple names for the same program.)

Splitting the source code of a large program into multiple �les can increase the
readability of its source code, but most of the mmh tools are small and straight-
forward programs. In exception of the MIME handling tools (i.e. mhbuild, mhstore,
show, etc.), pick is the only tool with more than one thousand lines of source code.
Splitting programs with less than one thousand lines of code into multiple source �les
leads seldom to better readability. For such tools, splitting still makes sense when parts
of the code are reused in other programs and the reused code fragment is (1) not gen-
eral enough for including it in the MH library or (2) has dependencies on a library that
only few programs need. uip/packsbr.c, for instance, provides the core program logic
for the packf and rcvpack programs. uip/packf.c and uip/rcvpack.c mainly wrap
the core function appropriately. No other tools use the folder packing functions. As
another example, uip/termsbr.c accesses terminal properties, which requires linking
with the termcap or a curses library. If uip/termsbr.c is included in the MH library,
then every program needs to be linked with termcap or curses, although only few of

Chapter 2 Discussion 47

the programs use the library.

The task of MIME handling is complex enough that splitting its code into multiple
source �les improves the readability. The program mhstore, for instance, is compiled
out of seven source �les with 2 500 lines of code in summary. The main code �le
uip/mhstore.c consists of 800 lines; the other 1 700 lines are code reused in other
MIME handling tools. It seems to be worthwhile to bundle the generic MIME handling
code into a MH-MIME library, as a companion to the MH standard library. This is left
to be done.

The work already accomplished focussed on the non-MIME tools. The amount of
code compiled into each program was reduced. This eases the understanding of the
code base. In nmh, comp was built from six source �les: comp.c, whatnowproc.c,
whatnowsbr.c, sendsbr.c, annosbr.c, and distsbr.c. In mmh, it builds from only
two: comp.c and whatnowproc.c. In nmh’s comp, the core function of whatnow, send,
and anno were all compiled into comp. This saved the need to execute these programs
with the expensive system calls fork() and exec(). Whereas this approach improved
the time performance, it interwove the source code. Core functionalities were not
encapsulated into programs but into function, which were then wrapped by programs.
For example, uip/annosbr.c included the function annotate(). Each program that
wanted to annotate messages, included the source �le uip/annosbr.c and called anno-

tate(). Because the function annotate() was used like the tool anno, it had seven
parameters, re�ecting the command line switches of the tool. When another pair of
command line switches was added to anno, a rather ugly hack was implemented to
avoid adding another parameter to the function [d9b1d57].

In mmh, the relevant code of comp comprises the two �les uip/comp.c and
uip/whatnowproc.c, together 210 lines of code, whereas in nmh, comp comprises six
�les with 2 450 lines. Not all of the code in these six �les is actually used by comp, but
the reader needed to read it all to know which parts are relevant. Understanding nmh’s
comp, required understanding the inner workings of uip/annosbr.c �rst. To be sure to
fully understand a program, its whole source code needs to be examined. Not doing so
is a leap of faith, assuming that the developers have avoided obscure programming
techniques. Here, it should be recalled that information passed in obscure ways
through the program’s source base, due to the aforementioned hack to save an addi-
tional parameter in nmh’s anno.

In mmh, understanding comp requires to read only 210 lines of code to read,
whereas the amount is ten times more for nmh’s comp.

By separating the tools on the program-level, the boundaries are clearly visible, as
the interfaces are calls to exec() rather than arbitrary function calls. Additionally, this
kind of separation is more strict because it is technically enforced by the operating sys-
tem; it can not be simply bypassed with global variables. Good separation simpli�es the
understanding of program code because the area in�uenced by any particular statement
is small. As I have read a lot in nmh’s code base during the last two years, I have
learned about the easy and the di�cult parts. In my observation, the understanding of
code is enormously eased if the in�uenced area is small and clearly bounded.

Yet, the real problem is another: Nmh violates the golden ‘‘one tool, one job’’ rule
of the Unix philosophy. Understanding comp requires understanding uip/annosbr.c

48 Markus Schnalke: The Modern Mail Handler

and uip/sendsbr.c because comp annotates and sends messages. In nmh, there surely
exist the tools anno and send, which cover these jobs, but comp and repl and forw

and dist and whatnow and viamail – they all (!) – have the same annotating and
sending functions included, once more. As a result, comp sends messages without using
send. The situation is the same as if grep would page its output without using more

just because both programs are part of the same code base.

The clear separation on the surface of nmh – the tool chest approach – is violated
on the level below. This violation is for the sake of time performance. Decades ago,
sacri�cing readability and conceptional beauty for speed might have been necessary to
prevent MH from being unusably slow, but today this is not the case anymore. No
longer should speed improvements that became unnecessary be kept. No longer should
readability or conceptional beauty be sacri�ced. No longer should the Unix
philosophy’s ‘‘one tool, one job’’ guideline be violated. Therefore, mmh’s comp no
longer sends messages.

In mmh, di�erent jobs are divided among separate programs that invoke each
other as needed. In consequence, comp invokes whatnow which thereafter invokes send

[3df5ab3] [c73c00b]. The clear separation on the surface is maintained on the
level below. Human users and other tools use the same interface – annotations, for
example, are made by invoking anno, no matter if requested by programs or by human
beings [469a416] [aed3841] [3caf9e2]. The decrease of tools built from multi-
ple source �les and thus the decrease of uip/*sbr.c �les con�rm the improvement
[9e6d913] [f0f8580] [0503a6e] [27826f9] [d1da1f9] [c422228]. This
is also visible in the complexity of the build dependency graphs:

a l iasbr .c

al i conf l ic t po s t s loca ls p o s t

t e rmsb r . c

a p d pincmhbu i l d mh lmhl i s tm h n mh s h owmh s t o r e mh t e s t m s hrcv t ty s c a ns h ow

annosb r . c

a n n o c ompdi s t f o rw rep ls e n dviamai l wha t now

sendsb r . cd is t sbr .c

r cvd i s tw h om

wha t nowp ro c . cwha tnowsb r . cs c an sb r . cd rop sb r . c

pack fr c vp a ck

mhl i s t sbr .c mhou t sb r . cmhm i s c . cmhf r e e . cmhp a r s e . c f tpsbr .c md5 . c mhbu i ld sb r . cmhca ch e s b r . c mhl sb r . cmhshowsb r . cmhs t o r e sb r . c p icksb r . c

p i ck

m s h cmd s . c vmhsb r . c

vmh

rep l sb r . c

Nmh:

a l iasbr .c

al i s p o s t

wha t nowp ro c . c

c omp di s t f o rw rep l

s c an sb r . c

inc s c a n

t e rmsb r . c

mhbu i l dmh l mhl i s t s h ow mh s t o r emh t e s t

mh f r e e . c mhp a r s e . cmhou t sb r . c mhm i s c . c mhl i s t sbr .c mhshowsb r . c d rop sb r . c

pack f r c vp a ck

dis t sbr .c

r cvd i s t s e n d

Mmh:

The �gures display all program to source �le relationships where programs (ellipses)
are built from multiple source �les (rectangles). The primary source �le of each pro-
gram is omited from the graph.

Chapter 3

SUMMARY

This document describes and explains my work on mmh. I have streamlined the project
by removing programs, facilities, and options that diverted from the main task of mmh,
being an MUA. I have modernized the code base removing obsolete functions and
activating modern features per default. Furthermore, I have improved the style by
refactoring clumpsy code and by identifying and forcing clear concepts. All my work
was motivated by Antoine de Saint Exupéry’s well-known statement [Saint-Exupéry39]:

It seems that perfection is attained not when there is nothing more to add,

but when there is nothing more to remove.

Against the common expectations, I hardly added new features. I regard my achieve-
ment in the selection of the relevant set of existing features, the choice of sensible
defaults, and the extensive focus on structure and concepts. I believe, the result is a
system simpler and clearer for both developing and using, without lacking important
functionality.

lines
of

code

Changesets in the version control system, in linear scale.
(The dates and the inner ticks, which mark the
turns of the years, are for convenience only.)

1999-04 2011-09 2012-07

0

10k

20k

30k

40k

50k

. .

. .

. .

. .

. .

nmh mmh

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outlook

MIME handling is the most complex part of mmh and the one with the highest poten-
tial for improvements. The changes already accomplished so far build upon the existing
structure, but deeper rework is necessary to integrate MIME handling consistently. For
instance, accessing messages and accessing their MIME parts should both covered by a

49

50 Markus Schnalke: The Modern Mail Handler

single approach. This requires the sequence notation to provide a way to address
MIME parts directly. In general, the sequence notation should become more powerful.
For instance, it is currently not possible to access the second last message in a given
sequence. Furthermore, displaying messages can be improved. Encrypted messages
should be decoded automatically and digital signatures veri�ed on-the-�y. In this
rework, MH’s unique features need to be preserved, but as well the default behavior
should become less surprising. Still, encoding and decoding is not done everywhere it
is necessary. The problems of not decoded quotations of the original message in replies
and not encoded non-ASCII characters in the message header remain.

Some of mmh’s tools were hardly touched, yet. Among them are dist, rcvdist,
mark, pick, and sortm. They should be refactored as well. Related to sortm is the
threaded message view, which is completely missing, so far. pick could pro�t from
message indexing. These �elds deserve further research.

Nmh’s testing framework has not been updated for mmh, yet. All refactoring had
been done without the safety net of a test framework. Hence, experience warns that
there may be subtle bugs in the code base. As a consequence of the modularization
rework (cf. Sec. 2.3.6), the compiler can no longer check the integrity of the interfaces
when tools invoke each other. Automated testing should detect errors there.

The features most often asked for are IMAP and Maildir support. But, both of
them collide with MH in the same fundamental way as di�erent �le system approaches
collide with Unix. Nevertheless, an abstraction layer could provide a mapping between
such storage back-ends and the MH storage format. Or, the mmh tool chest could be
reworked to operate on a generic back-end, making the MH storage format only one of
many possible back-ends. Research in this area is highly appreciated.

Relationship to nmh

The mmh project started as an experimental version of nmh because the nmh com-
munity did not welcome my plans and visions. The need to convincing the community
of every change I liked to undertake would have slowed down my work too much.
Hence, I created this experimental version to convince by demonstration.

While I worked on mmh, nmh’s community became very active as well. Although
we both worked on the same code base, there was no collaboration. This, I must admit,
was my failure because I kept my work hidden from the nmh community. The reasons
are personal and community-related. I am sorry for that and I like to improve in the
future. Nonetheless, I did not work behind completely closed doors. I discussed within
the regional computer community and presented the project in two video-recorded lec-
tures [lecture: cs, lecture: gpn]. First users appeared and provided feedback.

Over time, I had to realize that, although nmh and mmh have much in common,
the projects target di�erent goals. I am still undecided how to handle it, but my experi-
mental version more and more feels like being a fork. As I am strongly convinced that
the path taken for the development of mmh is a good one, I like to push the project
farther in this direction.

Appendix A

TOOLS OF MMH

Tool Description Part of Part of Amount

nmh mmh of change

ali list mail aliases √ √ ∗∗

anno annotate messages √ √ ∗∗∗

ap parse addresses 822-style √ √ ∗

burst explode digests into messages √ √ ∗∗

comp compose a message √ √ ∗∗

dist redistribute a message to additional addresses √ √ —

dp parse dates 822-style √ √ ∗

flist list folders with messages in given sequence √ √ —

flists list all folders with messages in given sequence √ √ —

fmtdump decode mmh format �les √ √ —

fnext change to next folder with new messages √ √ —

folder set/list current folder/message √ √ ∗

folders list all folders √ √ ∗

forw forward messages √ √ ∗∗∗

fprev change to previous folder with new messages √ √ —

inc incorporate new mail √ √ ∗

mark mark messages √ √ —

mhbuild translate MIME composition draft √ √ ∗∗

mhlist list information about content of MIME messages √ √ ∗∗

mhl produce formatted listings of mmh messages √ √ ∗∗∗

mhmail send mail (mailx replacement) √ √ ∗∗∗

mhparam print mmh pro�le components √ √ ∗

mhpath print full pathnames of mmh messages and folders √ √ —

mhpgp verify and decrypt a message with gnupg — √

mhsign sign or encrypt a message with gnupg — √

mhstore store contents of MIME messages into �les √ √ ∗∗

mmh initialize the mmh environment — √

mmhwrap adjust the search path — √

new report on folders with new messages √ √ —

next show the next message √ √ ∗

packf pack a folder into mbox format √ √ ∗∗∗

pick select messages by content √ √ —

prev show the previous message √ √ ∗

prompter prompting editor front end √ √ ∗∗

rcvdist asynchronously redistribute new mail √ √ —

rcvpack asynchronously append a message to an mbox �le √ √ ∗∗

51

52 Markus Schnalke: The Modern Mail Handler

Tool Description Part of Part of Amount

nmh mmh of change

rcvstore asynchronously incorporate new mail √ √ ∗

refile �le messages in other folders √ √ ∗∗∗

repl reply to a message √ √ ∗∗

rmf remove folder √ √ ∗

rmm remove messages √ √ ∗∗∗

scan produce a one line per message scan listing √ √ ∗∗

sendfiles send multiple �les in a MIME message √ √ ∗∗∗

send send a message √ √ ∗∗∗

show display MIME messages (renamed from mhshow) √ √ ∗∗∗

slocal asynchronously �lter and deliver new mail √ √ ∗∗

sortm sort messages √ √ —

spost deliver a message √ √ ∗∗∗

unseen scan new messages in all folders √ √ —

whatnow prompting front-end for send √ √ ∗∗

whom list recipients of a message √ √ ∗∗∗

Nmh tools removed from mmh:

conflict search for alias/password con�icts √ —

install–mh initialize the nmh environment √ —

mhn display/list/store/cache MIME messages √ —

msgchk check for messages √ —

msh nmh shell (and BBoard reader) √ —

post deliver a message √ —

rcvtty report new mail √ —

show display messages (mhshow in now known as show) √ —

REFERENCES

Anderson89
Robert H. Anderson, Norman Z. Shapiro, Tora K. Bikson, and Phyllis H. Kantar,
‘‘The Design of the MH Mail System,’’ (N-3017-IRIS), The RAND Corporation,
December 1989.

Bourne83
Stephen R. Bourne, The UNIX System, International Computer Science Series,
Addison-Wesley, 1983. ISBN: 0-201-13791-7

Brooks86
Frederick P. Brooks, Jr., ‘‘No Silver Bullet: Essence and Accidents of Software
Engineering,’’ in Information Processing 1986, the Proceedings of the IFIP Tenth
World Computing Conference, p. 1069–1076, Elsevier Science B.V., Amsterdam, The
Netherlands, 1986.

Costales08
Bryan Costales, Claus Aßmann, George Jansen, and Gregory N. Shapiro, sendmail,
Fourth Edition, O’Reilly, 2008. ISBN: 0-596-51029-2

Curry96
David A. Curry, UNIX Systems Programming for SVR4, Nutshell Series, O’Reilly,
1996. ISBN: 1-56592-163-1

Gancarz95
Mike Gancarz, The UNIX Philosophy, Digital Press, 1995. ISBN: 1-55558-123-4

Hegardt90
Mary Hegardt and Tim Morgan, MH for Beginners, April 12 1990. http://

git.savannah.gnu.org/cgit/nmh.git/plain/docs/historical/beginners.pdf

Kernighan84
Brian W. Kernighan and Rob Pike, The UNIX Programming Environment, Prentice
Hall, 1984. ISBN: 0-13-937681-X

Kernighan88
Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second
Edition, Prentice Hall, 1988. ISBN: 0-13-110362-8

Kernighan99
Brian W. Kernighan and Rob Pike, The Practice of Programming, Addison-Wesley,
1999. ISBN: 0-201-61586-X

lecture: cs
Lecture: Markus Schnalke, mmh, ChaosSeminar, CCC Ulm, April 2012. http://

ulm.ccc.de/ChaosSeminar/2012/04_mmh

lecture: gpn
Lecture: Markus Schnalke, meillo’s mail handler, Gulaschprogrammiernacht 12,
Entropia e.V. CCC Karlsruhe, June 2012. https://entropia.de/

53

54 Markus Schnalke: The Modern Mail Handler

GPN12:meillo%27s_mail_handler

mail: attach
Markus Schnalke, ‘‘[patch] snapshot of my MIME handling improvments,’’ nmh-
workers mailing list, Message-ID: <1PH2kD–0qV–00@serveme.schnalke.local>,
November 13 2010. http://lists.nongnu.org/archive/html/nmh–workers/2010–11/

msg00111.html

mail: edginess
Paul Vixie, ‘‘edginess,’’ nmh-workers mailing list, Message-ID: <4EF8B937.6060107@

isc.org>, December 26 2011. http://lists.nongnu.org/archive/html/nmh–workers/

2011–12/msg00117.html

mail: honig
Je�rey Honig, ‘‘nmh ‘post’ doesn’t read pro�le, �leproc ignored,’’ nmh-workers
mailing list, Message-ID: <CAC5WE8o+iMr3WXyUAVtp–b611+3w6sJS+–dc_qtQSXywNuzp9g@

mail.gmail.com>, January 2 2012. http://lists.nongnu.org/archive/html/nmh–

workers/2012–01/msg00005.html

mail: levine
David Levine, ‘‘nmh ‘post’ doesn’t read pro�le, �leproc ignored,’’ nmh-workers
mailing list, Message-ID: <24209.1325713661@nist–cbox32.combinenet.com>, January
4 2012. http://lists.nongnu.org/archive/html/nmh–workers/2012–01/msg00016.html

mail: mmh-ann
Markus Schnalke, ‘‘Experimental version: mmh,’’ nmh-workers mailing list,
Message-ID: <1RYetl–4Ok–00@serveme.home.schnalke.org>, December 8 2011.
http://lists.nongnu.org/archive/html/nmh–workers/2011–12/msg00038.html

mail: mta-mua
Thread with the subjects: ‘‘nmh @ gsoc’’, ‘‘external MTA’’ and ‘‘should nmh be an
MTA or an MUA?,’’ nmh-workers mailing list, January 2010. http://

lists.nongnu.org/archive/html/nmh–workers/2010–01/msg00026.html

mail: nmh-goal
Markus Schnalke, ‘‘Understanding nmh (aka. What’s the goal),’’ nmh-workers mail-
ing list, Message-ID: <1PNSw4–12C–00@serveme.schnalke.local>, November 30 2010.
http://lists.nongnu.org/archive/html/nmh–workers/2010–11/msg00193.html

McIlroy78
M. D. McIlroy, E. N. Pinson, and B. A. Tague, ‘‘UNIX Time-Sharing System: Fore-
word,’’ The Bell System Technical Journal, vol. 57, no. 6, p. 1902, Bell Laboratories,
1978.

MH-Memo
The Original MH-Proposal Memorandum: Stock Gaines and Norm Shapiro, The
Next Message System, RAND Corporation, Undated. Unpublished. Quoted in RAND
and the Information Evolution by Willis H. Ware, 2008, p. 129�. Also available
online at http://rand–mh.sourceforge.net/book/overall/hiofmh.html#TOMHP

Moss88
Sara E. Moss and Purvis M. Jackson, ‘‘An AJPO User’s Guide for MH, the Rand
Message Handling System,’’ (CMU/SEI-88-UG-1, ESD-TR-88-030), Carnegie Mellon
University, September 1988. http://www.dtic.mil/dtic/tr/fulltext/u2/a204635.pdf

References 55

Peek95
Jerry Peek, MH & xmh: Email for Users & Programmers, O’Reilly, 1995. An updated
version of the book (named MH & nmh) is freely available on the Internet:
http://rand–mh.sourceforge.net/book/ . The latest update happened in May 2006.

Raymond04
Eric S. Raymond, The Art of UNIX Programming, Addison-Wesley, 2004. ISBN:
0-13-142901-9 http://www.faqs.org/docs/artu/

Rochkind85
Marc J. Rochkind, Advanced UNIX Programming, Software Series, Prentice-Hall,
1985. ISBN: 0-13-011800-1

Rose85
Marshall T. Rose and John L. Romine, ‘‘MH.5: How to process 200 messages a day
and still get some real work done,’’ in Proceedings, Summer Usenix Conference and
Exhibition, p. 455–487, Portland, Oregon, June 1985.

Rose86
Marshall T. Rose and Jerry N. Sweet, The Rand MH Message Handling System:
Tutorial, May 21 1986. http://git.savannah.gnu.org/cgit/nmh.git/plain/docs/

historical/tutorial.pdf

Saint-Exupéry39
Antoine de Saint-Exupéry, Wind, Sand and Stars, Reynal & Hitchcock, New York,
1939.

Salus94
Peter H. Salus, A Quarter Century of UNIX, Addison-Wesley, 1994. ISBN:
0-201-54777-5

Schnalke10
Markus Schnalke, ‘‘Why the Unix Philosophy still matters,’’ Term paper, Ulm
University, 2010. http://marmaro.de/docs/studium/unix–phil/

Sill02
Dave Sill, The qmail Handbook, Apress, 2002. ISBN: 1-893115-40-2

web: email
Wikipedia, Email. http://en.wikipedia.org/wiki/Email

web: gsoc
Website of Google Summer of Code. http://code.google.com/soc/

web: lbl
Craig Leres, LBL changes. http://savannah.nongnu.org/people/resume.php

?user_id=20830

web: nmh-workers
Website of nmh-workers mailing list. https://lists.nongnu.org/mailman/listinfo/

nmh–workers. Alternative mailing list archive: http://www.mhonarc.org/archive/

html/nmh–workers/

web: rickert
Website of Neil Rickert’s mh (nmh) scripts. http://faculty.cs.niu.edu/˜rickert/

mh/

56 Markus Schnalke: The Modern Mail Handler

web: sloc-dwm
dwm: Lines of Code Through Time, Ohloh. http://www.ohloh.net/p/dwm/analyses/

latest/languages_summary

web: sloc-wmii
wmii: Lines of Code Through Time, Ohloh. http://www.ohloh.net/p/wmii/analyses/
latest/languages_summary

Wolter04
Jan Wolter, ‘‘DBM Hash Libraries,’’ in Unix Incompatibility Notes, 2000–2004.
http://www.unixpapa.com/incnote/dbm.html

XCU92
‘‘Commands and Utilities (XCU), Issue 4,’’ in CAE Speci�cation, The Open Group,
July 1992. ISBN: 1-872630-48-0

XVS87
‘‘XVS Commands and Utilities,’’ in X/Open Portability Guide, vol. 1, January 1987.
ISBN: 0-444-70174-5

REQUESTS FOR COMMENTS

RFC 821

Simple Mail Transfer Protocol , August 1982.

RFC 822

Standard for the Format of ARPA Internet Text Messages , August 1982.

RFC 934

Proposed Standard for Message Encapsulation , January 1985.

RFC 1864

The Content-MD5 Header Field , October 1995.

RFC 2045

Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies , November 1996.

RFC 2046

Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types , November
1996.

RFC 2047

MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions
for Non-ASCII Text , November 1996.

RFC 2048

Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures ,
November 1996.

RFC 2049

Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and
Examples , November 1996.

References 57

RFC 2822

Internet Message Format , April 2001.

RFC 3156

MIME Security with OpenPGP , August 2001.

RFC 4880

OpenPGP Message Format , November 2007.

WEBSITES OF SOFTWARE PROJECTS

dma https://github.com/corecode/dma

dwm http://dwm.suckless.org

fdm http://fdm.sourceforge.net

fetchmail http://www.fetchmail.info

getmail http://pyropus.ca/software/getmail/

git http://git–scm.com

gnupg http://www.gnupg.org

masqmail http://marmaro.de/prog/masqmail/

midnight commander http://www.gnu.org/software/mc/

MH-E http://mh–e.sourceforge.net

mmh http://marmaro.de/prog/mmh/

mpop http://mpop.sourceforge.net

mutt http://www.mutt.org

nmh http://nmh.nongnu.org

nullmailer http://untroubled.org/nullmailer/

Post�x http://www.postfix.org

procmail http://www.procmail.org

qmail http://cr.yp.to/qmail.html

Sendmail http://www.sendmail.com

sloccount http://www.dwheeler.com/sloccount/

ssmtp http://packages.qa.debian.org/s/ssmtp.html

wmii http://wmii.suckless.org

CONFIRMATION

I hereby a�rm that this thesis is the result of my own work, except where otherwise
indicated.

Breitingen, 2012-07-16

Markus Schnalke, #693913

59

COLOPHON

This document was typeset with the tro� document preparation system on Unix. After
having typeset my diploma thesis with LaTeX, the choice for tro� was similar to
preferring MH over mutt.

I used the tro� implementation of the Heirloom doctools, and built upon the ms
macro package. To meet my personal wishes, I added further macros and replaced
clumsy parts of ms. My own macro code comprises about 400 lines. Unfortunately, I
must admit that the tro� sources are not perfectly portable as I accessed Heirloom tro�
extensions and ms internals, occasionally. The typesetting command line read some-
thing like:

export TROFFONTS=fonts REFER=bib

soelim style *.roff | \

refer –e –P –sLAD –l,2 –k | tbl | grap | pic | \

troff –Tps –ms –mpictures 2>err.ig | dpost >thesis.ps

My document preparation setup was inspired and guided by Dougherty and O’Reilly’s
UNIX Text Processing and by chapter seven of Bourne’s The UNIX System . The
Nro�/Tro� User’s Manual helped with de�nitive answers.

The mail agent diagram was written in pic . The �gures displaying the number of
switches and the amount of code through time were created with grap . The build
dependency graph was generated with dot . Source data was preprocessed with awk .
For programming and for writing this document, I used the ex-vi editor because ed
would have been a bit too heavy, even for me. ;-)

The text and heading font is Philipp Poll’s Linux Libertine. The monospace font
used for code listings is a TrueType variant of Dimitar Zhekov’s Terminus font. Both
are free typefaces.

The layout of the inner pages of this document were modeled after the German
book Einführung in die Automatentheorie, Formale Sprache und Komplexitätstheorie by
Hopcroft and Ullman, Addison-Wesley, 1990. The title page was inspired by books of
the 19th century, mainly by the ones of Charles Darwin.

The complete sources of this document, as well as �nal versions in PDF and Postscript
format, are available on my website: http://marmaro.de/docs .

This document may be copied and redistributed in complete form. Apart from
that, follow the scienti�c custom: Quote and acknowledge the reference.

Dijkstra’s words on page iii are a quotation of EWD 648.

61

