
The

Modern Mail Handler

master’s thesis by

Markus Schnalke

Advised by

Prof. Dr. Franz Schweiggert

and Dr. Andreas Borchert

Ulm University

2012





At the heart of the unix philosophy is the idea that
the power of a system comes more from the relationship

among programs than from the programs themselves.

— Brian W. Kernighan and Rob Pike —





PREFACE

I have discovered the mail client nmh in September 2009. At that time I used to use mutt, as

many advanced Unix users do. When I read about nmh, its concepts had convinced me at

once. The transition from mutt to nmh was similar to managing �les in the Unix shell when

being used to the midnight commander, or like editing with vi when being used to modeless

editors. Such a change is not trivial, but in being convinced by the concepts and by having

done similar transitions for �le management and editing already, it was not too di�cult. In

contrast, setting up nmh to a convenient state became a tedious task that took several

months. Once having nmh arranged to a convenient state, I enjoyed using it because of its

conceptional elegance and its scripting capabilities. On the other hand, nevertheless, it still

was inconvenient for handling attachments, non-ASCII character encodings, and similar

features of modern emailing. My setup demanded more and more additional con�guration

and helper scripts to get nmh behave the way I wanted, although my expectations were

rather common for modern emailing. In being a computer scientist and programmer, I

wanted to improve the situation.

In Spring 2010, I asked on the nmh-workers mailing list for the possibility to o�er a Goo-

gle Summer of Code project for me. Participating in the development of nmh this way

appeared attractive to me, because I would have been able to work full time on nmh as the

project could have been part of my o�cial studies at university. Although the nmh commun-

ity had been generally positive on the suggestion, the administrative work for a GSoC project

had been to much to have it realized. Nontheless, my proposal had activated the nmh com-

munity. In the following weeks, goals for nmh’s future were discussed. In these discussions,

I became involved in the question whether nmh should include mail transfer facilities

[ML:MTA-MUA]. In this central point, my opinion di�ered from the opinion of most others.

I argued for the MTA facility of nmh to be removed. Besides the discussions, hardly any real

work was done. Being unable to work on nmh in a way that would be accepted as part of

my o�cial studies, I needed to choose another project.

Half a year later, starting in August 2010, I took one semester o� to travel through Latin

America. During my time in Argentina, I planned to work on Free Software. This brought

me back to nmh. Richard Sandelman, an active nmh user, cared for the o�cial basis. Juan

Granda, an argentine Free Software developer, provided a computer with Internet connection

for my work. Thanks to them, I was able to work on nmh during my three-month stay in

Santiago del Estero in Argentina. Quickly it became obvious that I wouldn’t succeed with my

main goal: improving the character encoding handling within the project. One of its rami�-

cations is the missing transfer decoding of quoted text in replies. As this is one of the most

intricate parts of the system, the goal was simply set too high. Instead, I improved the code

base as I read through it. I found minor bugs for which I proposed �xes to the community.

In the same go, I improved the documentation in minor ways. When I started with larger

code changes, I had to discover that the community was reluctant to change. Its wish for

compatibility was much stronger than its wish for convenient out-of-the-box setups – in con-

trast to my opinion. This led to long discussions, again. I came to understand their point of

view, but it was di�erent to mine. At the end of my three-month project, I had become

v



vi Markus Schnalke: The Modern Mail Handler

familiar with nmh’s code base and community. I had improved the project in minor ways,
and I still was convinced that I wanted to go on to do so.

Another half year later, the end of my studies came within reach. I needed a topic for my
master’s thesis. No question, I wanted to work on nmh. But well, not exactly on nmh,
because I had accepted that the nmh community has di�erent goals than I have. This would
result in much discussion and thus little progress. After careful thought, I decided to start an
experimental version of nmh. I wanted to implement my own ideas of how an MH-like sys-
tem should look like. I wanted to create a usable alternative version to be compared with the
present state of nmh. Eventually, my work would be proven successful or not. In any case,
the nmh project would pro�t from my experiences.

Focus of this Document

This document explains the design goals and implementation decisions for mmh. It discusses
technical, historical, social and philosophical considerations. On the technical side, this docu-
ment explains how an existing project was stream-lined by removing rough edges and exploit-
ing the central concepts better. On the historical side, changes through time in the use cases
and the email features, as well as the reactions to them, are discussed. Socially, this docu-
ment describes the e�ects and experiences of a newcomer with revolutionary aims entering
an old and matured software project. Philosophical thoughts on style, mainly based to the
Unix philosophy, are present throughout the discussions. The document describes the
changes to nmh, but as well, it clari�es my personal perception of the concepts of MH and
Unix, and explain my therefrom resulting point of view.

This document is written for the community around MH-like mail systems, including
developers and users. Despite the focus on MH-like systems, this document is may be pre-
cious to anyone interested in the Unix philosophy and anyone in contact to old software pro-
jects, be it code or community-related.

The reader is expected to be well familiar with Unix, C and emailing. Good Unix shell
knowledge is required, because MH relies fundamentally on the shell. Without the power of
the shell, MH becomes a motorbike without winding roads: boring. Introductions to Unix and
its shell can be found in ‘‘The UNIX Programming Environment’’ by Kernighan and Pike
[Kernighan84] or ‘‘The UNIX System’’ by Bourne [Bourne82]. The reader is assumed to be a
C programmer, but the document should be understandable otherwise, too. The de�nitive
guide to C is Kernighan and Ritchie’s ‘‘The C Programming Language’’ [Kernighan88]. Some
book about system-level C programming can be helpful additional literature. Rochkind and
Curry have written such books [Rochkind85, Curry96]. As large parts of the source code are
old, old books are likely more helpful for understanding. The reader is expected to know the
format of email messages and the structure of email transfer systems, at least on a basic level.
It’s advisable to have cross-read the RFCs 821 and 822. Further more, basic understanding of
MIME is good to have. The Wikipedia provides good introduction-level information to email.

Frequent references to the Unix philosophy will be made. Gancarz has tried to sum it up
in his book ‘‘The UNIX Philosophy’’ [Gancarz95]. Even better, though less concrete, are ‘‘The
UNIX Programming Environment’’ [Kernighan84] and ‘‘The Practice of Programming’’ [Ker-
nighan99] by Kernighan and Pike. The term paper ‘‘Why the Unix Philosophy still matters’’
[Schnalke10] by myself provides an overview on the philosophy, including a case study of
MH.



Preface vii

Although a brief introduction to MH is provided in Chapter 1, the reader is encouraged to
have a look at the MH Book ‘‘MH & nmh: Email for Users & Programmers’’ by Jerry Peek
[Peek95]. The current version is available freely on the Internet. It is the de�nitive guide to
MH and nmh.

This document is neither a user’s tutorial to mmh nor an introduction to any of the topics
covered. The technical discussions are on an advanced level. Nevertheless, as knowledge of
the fundamental concepts is the most valuable information a user can acquire about some
program or software system, this document may be worth a read for non-developers as well.

Organization

Which font for what use. Meaning of ‘foo(1)’. RFCs.

This thesis is divided into XXX chapters, ...

Chapter 1 introduces ...

Chapter 2 describes ...

Chapter 3 covers ...

Acknowledgments

To be written at the very end.





Chapter 1

INTRODUCTION

MH is a set of mail handling tools with a common concept, similar to the Unix tool chest,
which is a set of �le handling tools with a common concept. nmh is the currently most popu-
lar implementation of an MH-like mail handling system. This thesis describes an experimen-
tal version of nmh, named mmh.

This chapter introduces MH, its history, concepts and how it is used. It describes nmh’s
code base and community to give the reader a better understanding of the state from which
mmh started o�. Further more, this chapter outlines the mmh project itself, describing the
motivation for it and its goals.

1.1 MH – THE MAIL HANDLER

MH is a conceptual email system design and its concrete implementation. Notably, MH had
started as a design proposal at RAND Corporation, where the �rst implementation followed
later. In spirit, MH is similar to Unix, which in�uenced the world more in being a set of sys-
tem design concepts than in being a speci�c software product. The ideas behind Unix are
summarized in the Unix philosophy. MH follows this philosophy.

History

In 1977 at RAND Corporation, Norman Shapiro and Stockton Gaines had proposed the design
of a new mail handling system, called ‘‘Mail Handler’’ (MH), to superseed RAND’s old monol-
ithic ‘‘Mail System’’ (MS). Two years later, in 1979, Bruce Borden took the proposal and
implemented a prototype of MH. Before the prototype had been available, the concept was
believed to be practically unusable. But the prototype had proven successful and replaced MS
thereafter. In replacing MS, MH grew to an all-in-one mail system.

In the early Eighties, the University of California at Irvine (UCI) had started to use MH.
Marshall T. Rose and John L. Romine became the driving force then. They took over the
development and pushed MH forward. RAND had put the code into the public domain by
then. MH was developed at UCI at the time when the Internet appeared, when UCB imple-
mented the TCP/IP stack, and when Allman wrote Sendmail. MH was extended as emailing
became more featured. The development of MH was closely related to the development of
email RFCs. In the advent of MIME, MH was the �rst implementation of this new email stan-
dard.

In the Nineties, the Internet had become popular and in December 1996, Richard Coleman
initiated the ‘‘New Mail Handler’’ (nmh) project. Nmh is a fork of MH 6.8.3 and bases
strongly on the LBL changes by Van Jacobson, Mike Karels and Craig Leres. Colman intended
to modernize MH and improve its portability and MIME handling capabilities. This should be

1



2 Markus Schnalke: The Modern Mail Handler

done openly within the Internet community. The development of MH at UCI stopped after

the 6.8.4 release in February 1996, soon after the development of nmh had started. Today,

nmh has almost completely replaced the original MH. Some systems might still provide old

MH, but mainly for historical reasons.

In the last years, the work on nmh was mostly maintenance work. However, the develop-

ment revived in December 2011 and stayed busy since then.

Concepts

MH consists of a set of tools, each covering a speci�c task of email handling, like composing

a message, replying to a message, re�ling a message to a di�erent folder, listing the messages

in a folder. All of the programs operate on a common mail storage.

The mail storage consists of mail folders (directories) and messages (regular �les). Each

message is stored in a separate �le in the format it had been received (i.e. transfer format).

The �les are named with ascending numbers in each folder. The speci�c format of the mail

storage characterizes MH in the same way like the format of the �le system characterizes

Unix.

MH tools maintain a context, which includes the current mail folder. Processes in Unix

have a similar context, containing the current working directory, for instance. In contrast, the

process context is maintained by the Unix kernel automatically, whereas MH tools need to

maintain the MH context themselves. The user can have one MH context or multiple ones,

he can even share it with other users.

Messages are named by their numeric �lename, but they can have symbolic names, too.

These are either automatically updated position names like being the next or the last message,

or user-settable group names for arbitrary sets of messages. These names are called

sequences. Sequences can be bound to the containing folder or to the context.

The user’s pro�le is a �le that contains his MH con�guration. Default switches for the

individual tools can be speci�ed to adjust them to the user’s personal preferences. Multiple

versions of the same command with di�erent default values can also be created very easily.

Form templates for new messages or for replies are easily changeable, and output is adjustable

with format �les. Almost every part of the system can be adjusted to personal preference.

The system is well scriptable and extensible. New MH tools are built out of or on top of

existing ones quickly. Further more, MH encourages the user to tailor, extend and automate

the system. As the MH tool chest was modeled after the Unix tool chest, the properties of

the latter apply to the former as well.

Using MH

It is strongly recommended to have a look at the MH Book, which introduces well into using

MH [Peek95, Part II]. Rose and Romine provide a deeper and more technical though slightly

outdated introduction in only about two dozens pages [Rose85].

Following is an example mail handling session. It uses mmh but is mostly compatible

with nmh and old MH. Details might vary but the look’n’feel is the same.



Chapter 1 Introduction 3

$ inc

Incorporating new mail into inbox...

1+ 2012�05�16 11:16 meillo@dream.home Hello

2 2012�05�16 11:17 meillo@dream.home book

$ show

Date: Wed, 16 May 2012 11:16:00 +0200

To: meillo

From: <meillo@dream.home.schnalke.org>

Subject: Hello

part text/plain 13

mmh is great

$ next

Date: Wed, 16 May 2012 11:17:24 +0200

To: meillo

From: <meillo@dream.home.schnalke.org>

Subject: book

part text/plain 79

Hello meillo,

have a look at the ``Daemon book''. You need to read that!

foo

$ rmm 1

$ scan

2+ 2012�05�16 11:17 meillo@dream.home book

$

1.2 NMH: CODE AND COMMUNITY

In order to understand the condition, goals and dynamics of a project, one needs to know the

reasons. This section explains the background.

MH predates the Internet, it comes from times before networking was universal, it comes

from times when emailing was small, short and simple. Then it grew, spread and adopted to

the changes email went through. Its core-concepts, however, remained the same. During the

Eighties students at UCI actively worked on MH. They added new features and optimized the

code for the then popular systems. All this still was in times before POSIX and ANSI C. As

large parts of the code stem from this time, today’s nmh source code still contains many



4 Markus Schnalke: The Modern Mail Handler

ancient parts. BSD-speci�c code and constructs tailored for hardware of that time are fre-
quent.

Nmh started about a decade after the POSIX and ANSI C standards had been established.
A more modern coding style entered the code base, but still a part of the developers came
from ‘‘the old days’’. The developer base became more diverse and thus resulted in code of
di�erent style. Programming practices from di�erent decades merged in the project. As
several peers added code, the system became more a conglomeration of single tools rather
than a homogeneous of-one-cast mail system. Still, the existing basic concepts held it
together. They were mostly untouched throughout the years.

Despite the tool chest approach at the surface – a collection of separate small programs –
on the source code level it is much more interweaved. Several separate components were
compiled into one program for e�ciency reasons. This lead to intricate innards. Unfor-
tunately, the clear separation on the outside appeared as being pretty interweaved inside.

The advent of MIME rose the complexity of email by a magnitude. This is visible in nmh.
The MIME-related parts are the most complex ones. It’s also visible that MIME support had
been added on top of the old MH core. MH’s tool chest style made this easily possible and
encourages such approaches, but unfortunately, it lead to duplicated functions and half-
hearted implementation of the concepts.

To provide backward-compatibility, it is a common understanding to not change the
default settings. In consequence, the user needs to activate modern features explicitly to be
able to use them. This puts a burden on new users, because out-of-the-box nmh remains in
the same ancient style. If nmh is seen to be a back-end, then this compatibility surely is
important. However, in the same go, new users have di�culties to use nmh for modern
emailing. The small but matured community around nmh hardly needs much change as they
have their convenient setups since decades.

1.3 MMH

I started to work on my experimental version in October 2011, at a time when there were no
more than three commits to nmh since the beginning of the year. In December, when I
announced my work in progress on the nmh-workers mailing list [ML:mmh_ann], nmh’s
community became active, too. This movement was heavily pushed by Paul Vixie’s ‘‘edgi-
ness’’ comment [ML:edginess]. After long years of stagnation, nmh became actively
developed again. Hence, while I was working on mmh, the community was working on nmh,
in parallel.

The name mmh may stand for modern mail handler, because the project tries to modernize
nmh. Personally however, I prefer to call mmh meillo’s mail handler, emphasizing that the
project follows my visions and preferences. (My login name is meillo.) This project model
was inspired by dwm, which is Anselm Garbe’s personal window manager – targeted to
satisfy Garbe’s personal needs whenever con�icts appear. Dwm had retained its lean elegance
and its focused character, whereas its community-driven predecessor wmii had grown fat over
time. The development of mmh should remain focused.



Chapter 1 Introduction 5

Motivation

MH is the most important of very few command line tool chest email systems. Tool chests

are powerful because they can be perfectly automated and extended. They allow arbitrary

kinds of front-ends to be implemented on top of them quickly and without internal

knowledge. Additionally, tool chests are much better to maintain than monolithic programs.

As there are few tool chests for emailing and as MH-like ones are the most popular among

them they should be developed further. This keeps their conceptional elegance and unique

scripting qualities available to users. Mmh will create a modern and convenient entry point

to MH-like systems for new and interested users.

The mmh project is motivated by de�cits of nmh and my wish for general changes, com-

bined with the nmh community’s reluctancy to change.

nmh hadn’t adjusted to modern emailing needs well enough. The default setup was com-

pletely unusable for modern emailing. Too much setup work was required. Several modern

features were already available but the community didn’t wanted to have them as default.

mmh is a way to change this.

In my eyes, MH’s concepts could be exploited even better and the style of the tools could

be improved. Both would simplify and generalize the system, providing cleaner interfaces and

more software leverage at the same time. mmh is a way to demonstrate this.

In providing several parts of an email system, nmh can hardly compete with the large spe-

cialized projects that focus on only one of the components. The situation can be improved by

concentrating the development power on the most unique part of MH and letting the user

pick his preferred set of other mail components. Today’s pre-packaged software components

encourage this model. mmh is a way to go for this approach.

It’s worthwhile to fork nmh for the development of mmh, because the two projects focus

on di�erent goals and di�er in fundamental questions. The nmh community’s reluctance to

change con�icts with my strong will to change. In developing a separate experimental ver-

sion new approaches can easily be tried out without the need to discuss changes beforehand.

In fact, revolutionary changes are hardly possible otherwise.

The mmh project provides the basis to implemented and demonstrated the listed ideas

without the need to change nmh or its community. Of course, the results of the mmh project

shall improve nmh, in the end.

Target Field

Any e�ort needs to be targeted towards a speci�c goal in order to be successful. Following is

a description of the imagined typical mmh user. mmh should satisfy his needs. Actually, as

mmh is my personal version of MH, this is a description of myself.

The target user of mmh likes Unix and its philosophy. He likes to use programs that are

conceptionally appealing. He’s familiar with the command line and enjoys its power. He is

at least capable of shell scripting and wants to improve his productivity by scripting the mail

system. He naturally uses modern email features, like attachments, non-ASCII text, and digi-

tal cryptography. He is able to setup email system components besides mmh, and actually

likes the choice to pick the ones he prefers. He has a reasonably modern system that com-

plies to standards, like POSIX and ANSI C.



6 Markus Schnalke: The Modern Mail Handler

The typical user invokes mmh commands directly in an interactive shell session, but as

well, he uses them to automate mail handling tasks. Likely, he runs his mail setup on a

server machine, to which he connects via ssh. He might also have local mmh installations on

his workstations, but does rather not rely on graphical front-ends. He de�nitely wants to be

�exible and thus be able to change his setup to suite his needs.

The typical mmh user is a programmer himself. He likes to, occasionally, take the oppor-

tunity of Free Software to put hands on and get involved in the software he uses. Hence, he

likes small and clean code bases and he cares for code quality. In general, he believes that:

• Elegance – i.e. simplicity, clarity and generality – is most important.

• Concepts are more important than the concrete implementation.

• Code optimizations for anything but readability should be avoided if possible.

• Having a lot of choice is bad.

• Removed code is debugged code.

Goals

The general goals for the mmh project are the following:

Stream-lining

Mmh should be stripped down to its core, which is the MUA part of emailing. The

feature set should be distilled to the ones really needed, e�ectively removing corner-cases.

Parts that don’t add to the main task of being a conceptionally appealing MUA should be

removed. This includes, the MTA and MRA facilities. Choice should be reduced to the

main options.

Modernizing

Mmh’s feature set needs to become more modern. Better support for attachment and digi-

tal cryptography needs to be added. MIME support needs to be integrated deeper and

more naturally. The modern email features need to be readily available, out-of-the-box.

And on the other hand, bulletin board support and similar obsolete facilities need to be

dropped out. Likewise, ancient technologies, like hardcopy terminals, should not be sup-

ported any further.

Code style

Mmh’s source code needs to be updated to modern standards. Standardized library func-

tions should replace non-standard versions whenever possible. Code should be separated

into distinct modules when possible. Time and space optimizations should to be replaced

by clear and readable code. A uniform programming style should prevail.

Homogeneity

The available concepts need to be expanded as far as possible. A small set of concepts

should prevail thoroughly throughout the system. The whole system should appear to be

of-one-style. It should feel like being cast as one.


