
The

Modern Mail Handler

Markus Schnalke

Master’s Thesis

advised by

Prof. Dr. Franz Schweiggert

and Dr. Andreas Borchert

Ulm University

2012

At the heart of the unix philosophy is the idea that
the power of a system comes more from the relationship

among programs than from the programs themselves.

— Brian W. Kernighan and Rob Pike —

CONTENTS

Preface .. vii

1 Introduction .. 1

1.1 MH – the Mail Handler .. 1

1.2 nmh: Code and Community .. 3

1.3 mmh .. 4

2 Discussion .. 7

2.1 Stream-lining .. 7

2.1.1 Removal of the Mail Transfer Facilities 7

2.1.2 Removal of non-MUA Tools .. 10

2.1.3 show and mhshow .. 11

2.1.4 Removal of Con�gure Options ... 12

2.1.5 Removal of Switches ... 16

2.2 Modernizing .. 21

2.2.1 Removal of Code Relicts .. 21

2.2.2 Attachments ... 24

2.2.3 Digital Cryptography .. 24

2.2.4 Good Defaults ... 24

2.3 Code style ... 25

2.3.1 Standard Code ... 25

2.3.2 Separation ... 25

2.3.3 Modularization .. 26

2.3.4 Style ... 26

2.4 Concept Exploitation/Homogeneity ... 26

2.4.1 Draft Folder .. 26

2.4.2 Trash Folder ... 27

2.4.3 Path Notations .. 28

2.4.4 MIME Integration ... 28

2.4.5 Of One Cast ... 28

3 Summary .. 29

References .. 31

v

PREFACE

I have discovered the mail client nmh in Fall 2009. At that time I used mutt, as many

advanced Unix users do. When I read about nmh, its concepts convinced me at once.

The transition from mutt to nmh was similar to beginning with �le management in the

Unix shell when being used to the midnight commander, or like starting with vi when

being used to modeless editors. Such a change is not trivial, but, in being convinced

by the concepts and by having done similar transitions for �le management and editing

already, it was not too di�cult. In contrast, setting up nmh to a convenient state

became a tedious task that took several months. Once having nmh arranged to a con-

venient state, I enjoyed using it because of its conceptional elegance and its scripting

capabilities. Nevertheless, it still was inconvenient for handling attachments, non-

ASCII character encodings, and similar features of modern emailing. My setup

demanded more and more additional con�guration and helper scripts to have nmh

behave the way I wanted; yet my expectations were rather common for modern email-

ing. In being a computer scientist and programmer, I wanted to improve the situation.

In Spring 2010, I asked on the nmh-workers mailing list for the possibility to o�er a

Google Summer of Code project for me. Participating in the development of nmh this

way appeared attractive to me, because I would have been able to work full time on

nmh. Although the nmh community had been generally positive on the suggestion,

the administrative work for a GSoC project had been to much to have it realized.

Nontheless, my proposal had activated the nmh community. In the following weeks,

goals for nmh’s future were discussed. In these discussions, I became involved in the

question whether nmh should include mail transfer facilities [ML:MTA-MUA]. I argued

for the MTA of nmh to be removed. In this fundamental question, my opinion di�ered

from the opinion of most others. Sadly, besides the discussions, hardly any real work

was done. Being unable to work on nmh in a way that would be accepted at univer-

sity as part of my studies, I needed to choose another project.

Half a year later, starting in August 2010, I took one semester o� to travel through

Latin America. During my time in Argentina, I wanted to work on Free Software.

This brought me back to nmh. Richard Sandelman, an active nmh user, cared for the

o�cial basis. Juan Granda, an argentine Free Software developer, provided a computer

with Internet connection. Thanks to them, I was able to work on nmh during my

three-month stay in Santiago del Estero, Argentina. Quickly it became obvious that I

wouldn’t succeed with my main goal, to improve the character encoding handling.

(One of its rami�cations is the missing transfer decoding of quoted text in replies.) As

this is one of the most intricate parts of the system, the goal was simply set too high.

Instead, I improved the code base as I read through it. I found minor bugs for which I

proposed �xes. In the same go, I improved the documentation in minor ways. When I

started with larger code changes, I had to discover that the community was reluctant

to change. Its wish for compatibility was much stronger than its wish for convenient

out-of-the-box setups – in contrast to my opinion. This led to long discussions, again.

I came to understand their point of view, but it was di�erent to mine. At the end of

vii

viii Markus Schnalke: The Modern Mail Handler

my three-month project, I had become familiar with nmh’s code base and community, I
had improved the project in minor ways, and I still was convinced that I wanted to
continue to do so.

Another half year later, the end of my studies came within reach. I needed a topic
for my master’s thesis. No question, I wanted to work on nmh. But well, not exactly
on nmh, because I had accepted that the nmh community has di�erent goals than I
have. Working on nmh would result in much discussion and, in consequence, little
progress. After careful thought, I decided to start an experimental version of nmh. I
wanted to implement my own ideas of how an MH-like system should look like. I
wanted to create a usable alternative version to be compared with the present state of
nmh. Eventually, my work would be proven successful or not. In any case, the nmh
project would pro�t from my experiences.

Focus of this Document

This document explains the design goals and implementation decisions for mmh. It
discusses technical, historical, social and philosophical considerations. On the technical
side, this document explains how an existing project was stream-lined by removing
rough edges and exploiting the central concepts better. On the historical side, changes
through time in the use cases and the email features, as well as the reactions to them,
are discussed. Socially, this document describes the e�ects and experiences of a
newcomer with revolutionary aims entering an old and matured software project. Phi-
losophical thoughts on style, mainly based to the Unix philosophy, are present
throughout the discussions. The document describes the changes to nmh, but as well,
it clari�es my personal perception of the concepts of MH and Unix, and explain my
therefrom resulting point of view.

This document is written for the community around MH-like mail systems, includ-
ing developers and users. Despite the focus on MH-like systems, this document is may
be precious to anyone interested in the Unix philosophy and anyone in contact to old
software projects, be it code or community-related.

The reader is expected to be well familiar with Unix, C and emailing. Good Unix
shell knowledge is required, because MH relies fundamentally on the shell. Without the
power of the shell, MH becomes a motorbike without winding roads: boring. Introduc-
tions to Unix and its shell can be found in ‘‘The UNIX Programming Environment’’ by
Kernighan and Pike [Kernighan84] or ‘‘The UNIX System’’ by Bourne [Bourne82]. The
reader is assumed to be a C programmer, but the document should be understandable
otherwise, too. The de�nitive guide to C is Kernighan and Ritchie’s ‘‘The C Program-
ming Language’’ [Kernighan88]. Some book about system-level C programming can be
helpful additional literature. Rochkind and Curry have written such books
[Rochkind85, Curry96]. As large parts of the source code are old, old books are likely
more helpful for understanding. The reader is expected to know the format of email
messages and the structure of email transfer systems, at least on a basic level. It’s
advisable to have cross-read the RFCs 821 and 822. Further more, basic understanding
of MIME is good to have. The Wikipedia provides good introduction-level information
to email.

Frequent references to the Unix philosophy will be made. Gancarz has tried to sum
it up in his book ‘‘The UNIX Philosophy’’ [Gancarz95]. Even better, though less

Preface ix

concrete, are ‘‘The UNIX Programming Environment’’ [Kernighan84] and ‘‘The Practice
of Programming’’ [Kernighan99] by Kernighan and Pike. The term paper ‘‘Why the
Unix Philosophy still matters’’ [Schnalke10] by myself provides an overview on the
philosophy, including a case study of MH.

Although a brief introduction to MH is provided in Chapter 1, the reader is
encouraged to have a look at the MH Book ‘‘MH & nmh: Email for Users & Program-
mers’’ by Jerry Peek [Peek95]. The current version is available freely on the Internet.
It is the de�nitive guide to MH and nmh.

This document is neither a user’s tutorial to mmh nor an introduction to any of the
topics covered. The technical discussions are on an advanced level. Nevertheless, as
knowledge of the fundamental concepts is the most valuable information a user can
acquire about some program or software system, this document may be worth a read
for non-developers as well.

Organization

Which font for what use. Meaning of ‘foo(1)’. RFCs.

References to source code repository commits are printed as [1a2b3c4]. They
can be looked up with ‘git show XXX’ on the command line or online at
http://git.marmaro.de/?p=mmh;a=commitdiff;h=XXX, replacing ‘XXX’ with the hash
value. In this example: ‘git show 1a2b3c4’ or
http://git.marmaro.de/?p=mmh;a=commitdiff;h=1a2b3cd. Whereas the code repo-
sitory will probably be available on the Internet forever, a website URL is always at
risk to change.

This thesis is divided into XXX chapters, ...

Chapter 1 introduces ...

Chapter 2 describes ...

Chapter 3 covers ...

Acknowledgments

To be written at the very end.

Chapter 1

INTRODUCTION

MH is a set of mail handling tools with a common concept, similar to the Unix tool
chest, which is a set of �le handling tools with a common concept. nmh is the
currently most popular implementation of an MH-like mail handling system. This
thesis describes an experimental version of nmh, named mmh.

This chapter introduces MH, its history, concepts and how it is used. It describes
nmh’s code base and community to give the reader a better understanding of the state
from which mmh started o�. Further more, this chapter outlines the mmh project
itself, describing the motivation for it and its goals.

1.1 MH – THE MAIL HANDLER

MH is a conceptual email system design and its concrete implementation. Notably, MH
had started as a design proposal at RAND Corporation, where the �rst implementation
followed later. In spirit, MH is similar to Unix, which in�uenced the world more in
being a set of system design concepts than in being a speci�c software product. The
ideas behind Unix are summarized in the Unix philosophy. MH follows this philosophy.

History

In 1977 at RAND Corporation, Norman Shapiro and Stockton Gaines had proposed the
design of a new mail handling system, called ‘‘Mail Handler’’ (MH), to superseed
RAND’s old monolithic ‘‘Mail System’’ (MS). Two years later, in 1979, Bruce Borden
took the proposal and implemented a prototype of MH. Before the prototype had been
available, the concept was believed to be practically unusable. But the prototype had
proven successful and replaced MS thereafter. In replacing MS, MH grew to an all-in-
one mail system.

In the early Eighties, the University of California at Irvine (UCI) had started to use
MH. Marshall T. Rose and John L. Romine became the driving force then. They took
over the development and pushed MH forward. RAND had put the code into the pub-
lic domain by then. MH was developed at UCI at the time when the Internet appeared,
when UCB implemented the TCP/IP stack, and when Allman wrote Sendmail. MH was
extended as emailing became more featured. The development of MH was closely
related to the development of email RFCs. In the advent of MIME, MH was the �rst
implementation of this new email standard.

In the Nineties, the Internet had become popular and in December 1996, Richard
Coleman initiated the ‘‘New Mail Handler’’ (nmh) project. Nmh is a fork of MH 6.8.3
and bases strongly on the LBL changes by Van Jacobson, Mike Karels and Craig Leres.
Colman intended to modernize MH and improve its portability and MIME handling

1

2 Markus Schnalke: The Modern Mail Handler

capabilities. This should be done openly within the Internet community. The develop-

ment of MH at UCI stopped after the 6.8.4 release in February 1996, soon after the

development of nmh had started. Today, nmh has almost completely replaced the ori-

ginal MH. Some systems might still provide old MH, but mainly for historical reasons.

In the last years, the work on nmh was mostly maintenance work. However, the

development revived in December 2011 and stayed busy since then.

Concepts

MH consists of a set of tools, each covering a speci�c task of email handling, like com-

posing a message, replying to a message, re�ling a message to a di�erent folder, listing

the messages in a folder. All of the programs operate on a common mail storage.

The mail storage consists of mail folders (directories) and messages (regular �les).

Each message is stored in a separate �le in the format it had been received (i.e. transfer

format). The �les are named with ascending numbers in each folder. The speci�c for-

mat of the mail storage characterizes MH in the same way like the format of the �le

system characterizes Unix.

MH tools maintain a context, which includes the current mail folder. Processes in

Unix have a similar context, containing the current working directory, for instance. In

contrast, the process context is maintained by the Unix kernel automatically, whereas

MH tools need to maintain the MH context themselves. The user can have one MH

context or multiple ones, he can even share it with other users.

Messages are named by their numeric �lename, but they can have symbolic names,

too. These are either automatically updated position names like being the next or the

last message, or user-settable group names for arbitrary sets of messages. These names

are called sequences. Sequences can be bound to the containing folder or to the con-

text.

The user’s pro�le is a �le that contains his MH con�guration. Default switches for

the individual tools can be speci�ed to adjust them to the user’s personal preferences.

Multiple versions of the same command with di�erent default values can also be

created very easily. Form templates for new messages or for replies are easily change-

able, and output is adjustable with format �les. Almost every part of the system can

be adjusted to personal preference.

The system is well scriptable and extensible. New MH tools are built out of or on

top of existing ones quickly. Further more, MH encourages the user to tailor, extend

and automate the system. As the MH tool chest was modeled after the Unix tool

chest, the properties of the latter apply to the former as well.

Using MH

It is strongly recommended to have a look at the MH Book, which introduces well into

using MH [Peek95, Part II]. Rose and Romine provide a deeper and more technical

though slightly outdated introduction in only about two dozens pages [Rose85].

Following is an example mail handling session. It uses mmh but is mostly compati-

ble with nmh and old MH. Details might vary but the look’n’feel is the same.

Chapter 1 Introduction 3

$ inc

Incorporating new mail into inbox...

1+ 2012�05�16 11:16 meillo@dream.home Hello

2 2012�05�16 11:17 meillo@dream.home book

$ show

Date: Wed, 16 May 2012 11:16:00 +0200

To: meillo

From: <meillo@dream.home.schnalke.org>

Subject: Hello

part text/plain 13

mmh is great

$ next

Date: Wed, 16 May 2012 11:17:24 +0200

To: meillo

From: <meillo@dream.home.schnalke.org>

Subject: book

part text/plain 79

Hello meillo,

have a look at the

Daemon book		. You need to read that!

foo

$ rmm 1

$ scan

2+ 2012�05�16 11:17 meillo@dream.home book

$

1.2 NMH: CODE AND COMMUNITY

In order to understand the condition, goals and dynamics of a project, one needs to

know the reasons. This section explains the background.

MH predates the Internet, it comes from times before networking was universal, it

comes from times when emailing was small, short and simple. Then it grew, spread

and adopted to the changes email went through. Its core-concepts, however, remained

the same. During the Eighties students at UCI actively worked on MH. They added

new features and optimized the code for the then popular systems. All this still was in

times before POSIX and ANSI C. As large parts of the code stem from this time,

today’s nmh source code still contains many ancient parts. BSD-speci�c code and

4 Markus Schnalke: The Modern Mail Handler

constructs tailored for hardware of that time are frequent.

Nmh started about a decade after the POSIX and ANSI C standards had been esta-
blished. A more modern coding style entered the code base, but still a part of the
developers came from ‘‘the old days’’. The developer base became more diverse and
thus resulted in code of di�erent style. Programming practices from di�erent decades
merged in the project. As several peers added code, the system became more a
conglomeration of single tools rather than a homogeneous of-one-cast mail system.
Still, the existing basic concepts held it together. They were mostly untouched
throughout the years.

Despite the tool chest approach at the surface – a collection of separate small pro-
grams – on the source code level it is much more interweaved. Several separate com-
ponents were compiled into one program for e�ciency reasons. This lead to intricate
innards. Unfortunately, the clear separation on the outside appeared as being pretty
interweaved inside.

The advent of MIME rose the complexity of email by a magnitude. This is visible
in nmh. The MIME-related parts are the most complex ones. It’s also visible that
MIME support had been added on top of the old MH core. MH’s tool chest style made
this easily possible and encourages such approaches, but unfortunately, it lead to dupli-
cated functions and half-hearted implementation of the concepts.

To provide backward-compatibility, it is a common understanding to not change the
default settings. In consequence, the user needs to activate modern features explicitly
to be able to use them. This puts a burden on new users, because out-of-the-box nmh
remains in the same ancient style. If nmh is seen to be a back-end, then this compati-
bility surely is important. However, in the same go, new users have di�culties to use
nmh for modern emailing. The small but matured community around nmh hardly
needs much change as they have their convenient setups since decades.

1.3 MMH

I started to work on my experimental version in October 2011, at a time when there
were no more than three commits to nmh since the beginning of the year. In
December, when I announced my work in progress on the nmh-workers mailing list
[ML:mmh_ann], nmh’s community became active, too. This movement was heavily
pushed by Paul Vixie’s ‘‘edginess’’ comment [ML:edginess]. After long years of stagna-
tion, nmh became actively developed again. Hence, while I was working on mmh, the
community was working on nmh, in parallel.

The name mmh may stand for modern mail handler, because the project tries to
modernize nmh. Personally however, I prefer to call mmh meillo’s mail handler,
emphasizing that the project follows my visions and preferences. (My login name is
meillo.) This project model was inspired by dwm, which is Anselm Garbe’s personal
window manager – targeted to satisfy Garbe’s personal needs whenever con�icts
appear. Dwm had retained its lean elegance and its focused character, whereas its
community-driven predecessor wmii had grown fat over time. The development of
mmh should remain focused.

Chapter 1 Introduction 5

Motivation

MH is the most important of very few command line tool chest email systems. Tool

chests are powerful because they can be perfectly automated and extended. They allow

arbitrary kinds of front-ends to be implemented on top of them quickly and without

internal knowledge. Additionally, tool chests are much better to maintain than monol-

ithic programs. As there are few tool chests for emailing and as MH-like ones are the

most popular among them they should be developed further. This keeps their concep-

tional elegance and unique scripting qualities available to users. Mmh will create a

modern and convenient entry point to MH-like systems for new and interested users.

The mmh project is motivated by de�cits of nmh and my wish for general changes,

combined with the nmh community’s reluctancy to change.

nmh hadn’t adjusted to modern emailing needs well enough. The default setup was

completely unusable for modern emailing. Too much setup work was required.

Several modern features were already available but the community didn’t wanted to

have them as default. mmh is a way to change this.

In my eyes, MH’s concepts could be exploited even better and the style of the tools

could be improved. Both would simplify and generalize the system, providing cleaner

interfaces and more software leverage at the same time. mmh is a way to demonstrate

this.

In providing several parts of an email system, nmh can hardly compete with the

large specialized projects that focus on only one of the components. The situation can

be improved by concentrating the development power on the most unique part of MH

and letting the user pick his preferred set of other mail components. Today’s pre-

packaged software components encourage this model. mmh is a way to go for this

approach.

It’s worthwhile to fork nmh for the development of mmh, because the two projects

focus on di�erent goals and di�er in fundamental questions. The nmh community’s

reluctance to change con�icts with my strong will to change. In developing a separate

experimental version new approaches can easily be tried out without the need to dis-

cuss changes beforehand. In fact, revolutionary changes are hardly possible otherwise.

The mmh project provides the basis to implemented and demonstrated the listed

ideas without the need to change nmh or its community. Of course, the results of the

mmh project shall improve nmh, in the end.

Target Field

Any e�ort needs to be targeted towards a speci�c goal in order to be successful. Fol-

lowing is a description of the imagined typical mmh user. mmh should satisfy his

needs. Actually, as mmh is my personal version of MH, this is a description of myself.

The target user of mmh likes Unix and its philosophy. He likes to use programs

that are conceptionally appealing. He’s familiar with the command line and enjoys its

power. He is at least capable of shell scripting and wants to improve his productivity

by scripting the mail system. He naturally uses modern email features, like attach-

ments, non-ASCII text, and digital cryptography. He is able to setup email system

components besides mmh, and actually likes the choice to pick the ones he prefers. He

has a reasonably modern system that complies to standards, like POSIX and ANSI C.

6 Markus Schnalke: The Modern Mail Handler

The typical user invokes mmh commands directly in an interactive shell session,

but as well, he uses them to automate mail handling tasks. Likely, he runs his mail

setup on a server machine, to which he connects via ssh. He might also have local

mmh installations on his workstations, but does rather not rely on graphical front-

ends. He de�nitely wants to be �exible and thus be able to change his setup to suite

his needs.

The typical mmh user is a programmer himself. He likes to, occasionally, take the

opportunity of Free Software to put hands on and get involved in the software he uses.

Hence, he likes small and clean code bases and he cares for code quality. In general,

he believes that:

• Elegance – i.e. simplicity, clarity and generality – is most important.

• Concepts are more important than the concrete implementation.

• Code optimizations for anything but readability should be avoided if possible.

• Having a lot of choice is bad.

• Removed code is debugged code.

Goals

The general goals for the mmh project are the following:

Stream-lining

Mmh should be stripped down to its core, which is the user agent (MUA). The

feature set should be distilled to the ones really needed, e�ectively removing

corner-cases. Parts that don’t add to the main task of being a conceptionally

appealing MUA should be removed. This includes, the mail submission and mail

retrieval facilities. Choice should be reduced to the main options.

Modernizing

Mmh’s feature set needs to become more modern. Better support for attachment

and digital cryptography needs to be added. MIME support needs to be integrated

deeper and more naturally. The modern email features need to be readily available,

out-of-the-box. And on the other hand, bulletin board support and similar obsolete

facilities need to be dropped out. Likewise, ancient technologies, like hardcopy ter-

minals, should not be supported any further.

Code style

Mmh’s source code needs to be updated to modern standards. Standardized library

functions should replace non-standard versions whenever possible. Code should be

separated into distinct modules when possible. Time and space optimizations

should to be replaced by clear and readable code. A uniform programming style

should prevail.

Homogeneity

The available concepts need to be expanded as far as possible. A small set of con-

cepts should prevail thoroughly throughout the system. The whole system should

appear to be of-one-style. It should feel like being cast as one.

Chapter 2

DISCUSSION

This main chapter discusses the practical work done in the mmh project. It is struc-

tured along the goals to achieve. The concrete work done is described in the examples

of how the general goals were achieved. The discussion compares the current version

of mmh with the state of nmh just before the mmh project started, i.e. Fall 2011.

Current changes of nmh will be mentioned only as side notes.

2.1 STREAM-LINING

MH had been considered an all-in-one system for mail handling. The community

around nmh has a similar understanding. In fundamental di�erence, mmh shall be a

MUA only. I believe that the development of all-in-one mail systems is obsolete.

Today, email is too complex to be fully covered by single projects. Such a project

won’t be able to excel in all aspects. Instead, the aspects of email should be covered

my multiple projects, which then can be combined to form a complete system. Excel-

lent implementations for the various aspects of email exist already. Just to name three

examples: Post�x is a specialized MTA, Procmail is a specialized MDA, and Fetchmail is

a specialized MRA. I believe that it is best to use such specialized tools instead of pro-

viding the same function again as a side-component in the project.

Doing something well, requires to focus on a small set of speci�c aspects. Under

the assumption that focused development produces better results in the particular area,

specialized projects will likely be superior in their �eld of focus. Hence, all-in-one mail

system projects – no matter if monolithic or modular – will never be the best choice in

any of the �elds. Even in providing the best consistent all-in-one system they are

likely to be beaten by projects that focus only on integrating existing mail components

to a homogeneous system.

The limiting resource in Free Software community development is usually man

power. If the development power is spread over a large development area, it becomes

even more di�cult to compete with the specialists in the various �elds. The concrete

situation for MH-based mail systems is even tougher, given the small and aged com-

munity, including both developers and users, it has.

In consequence, I believe that the available development resources should be

focused on the point where MH is most unique. This is clearly the user interface – the

MUA. Peripheral parts should be removed to stream-line mmh for the MUA task.

2.1.1 Removal of the Mail Transfer Facilities

In contrast to nmh, which also provides mail submission and mail retrieval agents,

mmh is a MUA only. This general di�erence in the view on the character of nmh

7

8 Markus Schnalke: The Modern Mail Handler

initiated the development of mmh. Removing the mail transfer facilities had been the
�rst work task in the mmh project.

The MSA is called Message Transfer Service (MTS) in nmh. The facility established
network connections and spoke SMTP to submit messages for relay to the outside
world. This part was implemented by the post command. The changes in email in
the last years demanded changes in this part of nmh too. Encryption and authentica-
tion for network connections needed to be supported, hence TLS and SASL were intro-
duced into nmh. This added complexity to nmh without improving it in its core func-
tions. Also, keeping up with recent developments in the �eld of mail transfer requires
development power and specialists. In mmh this whole facility was simply cut o�. [
f6aa95b] [fecd5d3] [156d35f] Instead, mmh depends on an external MSA. The
only outgoing interface available to mmh is the sendmail command, which almost any
MSA provides. If not, a wrapper program can be written. It must read the message
from the standard input, extract the recipient addresses from the message header, and
hand the message over to the MSA. For example, a wrapper script for qmail would be:

#!/bin/sh

ignore command line arguments

exec qmail�inject

The requirement to parse the recipient addresses out of the message header is likely to
be removed in the future. Then mmh would give the recipient addresses as command
line arguments. This is clearly the better interface, but mmh does not provide it yet.

To retrieve mail, the inc command established network connections and spoke
POP3 to retrieve mail from remote servers. As with mail submission, the network con-
nections required encryption and authentication, thus TLS and SASL were added. Sup-
port for message retrieval through IMAP will become necessary to be added soon, too,
and so on for any changes in mail transfer. Mmh has dropped the support for retriev-
ing mail from remote locations. [ab7b484] Instead, it depends on an external tool
to cover this task. In mmh there exist two paths for messages to enter mmh’s mail
storage: (1) Mail can be incorporate with inc from the system maildrop, or (2) with
rcvstore by reading them, one at a time, from the standard input.

With the removal of the MSA and MRA, mmh converted from an all-in-one mail
system to being a MUA only. Following the Unix philosophy, it now focuses on one
job and tries to do that one well. Not only the programs follow that tenet but also the
project itself does so. Now, of course, mmh depends on third-party software. An
external MSA is required to transfer mail to the outside world; an external MRA is
required to retrieve mail from remote machines. There exist excellent implementations
of such software, which do this speci�c task likely better than the internal versions had
done it. Also, the best suiting programs can be freely chosen.

As it had already been possible to use an external MSA or MRA, why not keep the
internal version for convenience? The question whether there is sense in having a
fall-back pager in all the command line tools, for the cases when more or less aren’t
available, appears to be ridiculous. Now, an MSA or MRA is more complex than a text
pager and not necessarily available but still the concept of orthogonal design holds:
‘‘Write programs that do one thing and do it well.’’ [Salus94, McIlroy78] Here, this part
of the Unix philosophy was applied not only to the programs but to the project itself.

Chapter 2 Discussion 9

In other words: ‘‘Develop projects that focus on one thing and do it well.’’ Projects
grown complex should be split for the same reasons programs grown complex should
be split. If it is conceptionally more elegant to have the MSA and MRA separate pro-
jects then they should be separated. This is the case here, in my opinion. The RFCs
propose this separation by clearly distinguishing the di�erent mail handling tasks
[RFC 821]. The small interfaces between the mail agents support the separation.

In the beginning, email had been small and simple. (/bin/mail had once covered
anything there was to email and still had been small and simple.) Then the essential
complexity of email increased. (Essential complexity is the complexity de�ned by the
problem itself. [Brooks86]) Email systems reacted to this change: They grew. RFCs
started to introduce mail agents and separated the various tasks because the existing
tasks became more extensive and new tasks appeared. Again, email systems grew, or
they split parts o�. In nmh, for instance, the POP server, which the original MH had
included, was removed. Now is the time to go one step further and remove the MSA
and MRA, too. Not only does this decrease the code size of the project, but, more
important, it unburdens mmh of the whole �eld of message transfer with all its impli-
cations for the project. There’s no more need to concern with changes in network
transfer. This independence is received by depending on an external program that cov-
ers the �eld. Today, this is a reasonable exchange.

Function can be added in three di�erent ways:

• Implementing the function originally in the project.

• Depending on a library that provides the function.

• Depending on a program that provides the function.

Whereas adding the function originally to the project increases the code size most and
requires most maintenance and development work, it makes the project most indepen-
dent of other software. Using libraries or external programs require less maintenance
work but introduces dependencies on external software. Programs have the smallest
interfaces and provide the best separation but possibly limit the information exchange.
External libraries are stronger connected than external programs, thus information can
be exchanged more �exible. Adding code to a project increases maintenance work.
Implementing complex functions originally in the project will add a lot of code. This
should be avoided if possible. Hence, the dependencies only change in kind, not in
their existence. In mmh, library dependencies on libsasl2 and libcrypto/libssl
were treated against program dependencies on an MSA and an MRA. This also meant
treating build-time dependencies against run-time dependencies. Besides program
dependencies providing the stronger separation and being more �exible, they also
allowed over 6 000 lines of code to be removed from mmh. This made mmh’s code
base about 12% smaller. Reducing the project’s code size by such an amount without
actually losing functionality is a convincing argument. Actually, as external MSAs and
MRAs are likely superior to the project’s internal versions, the common user even
gains functionality.

Users of MH should not have problems to set up an external MSA and MRA. Also,
the popular MSAs and MRAs have large communities and a lot of documentation avail-
able. Choices for MSAs range from full-featured MTAs like Post�x over mid-size
MTAs like masqmail and dma to small forwarders like ssmtp and nullmailer . Choices

10 Markus Schnalke: The Modern Mail Handler

for MRAs include fetchmail , getmail , mpop and fdm .

2.1.2 Removal of non-MUA Tools

One goal of mmh is to remove the tools that are not part of the MUA’s task. Further

more, any tools that don’t improve the MUA’s job signi�cantly should be removed.

Loosely related and rarely used tools distract from the lean appearance. They require

maintenance work without adding much to the core task. On removing these tools,

the project shall become more stream-lined and focused. In mmh the following tools

are not available anymore:

• conflict was removed [8b23509] because it is a mail system maintenance tool

that is not MUA-related. It even checked /etc/passwd and /etc/group for con-

sistency, which is completely unrelated to email. A tool like conflict is surely

useful, but it should not be shipped with mmh.

• rcvtty was removed [14767c9] because its use case of writing to the user’s ter-

minal on receiving of mail is obsolete. If users like to be informed of new mail, the

shell’s MAILPATH variable or graphical noti�cations are technically more appealing.

Writing directly to a terminals is hardly ever wanted today. If though one wants to

have it this way, the standard tool write can be used in a way similar to:

scan �file � � write
id �un

• viamail was removed [eda72d6] when the new attachment system was

activated, because forw could then cover the task itself. The program sendfiles

was rewritten as a shell script wrapper around forw. [0e82199]

• msgchk was removed [bb9360e], because it lost its use case when POP support

was removed. A call to msgchk provided hardly more information than:

ls �l /var/mail/meillo

It did distinguished between old and new mail, but this detail information and can

be retrieved with stat(1), too. A very small shell script could be written to output

the information in a similar way, if truly necessary. As mmh’s inc only incor-

porates mail from the user’s local maildrop, and thus no data transfers over slow

networks are involved, there’s hardly any need to check for new mail before incor-

porating it.

• msh was removed [9166901] because the tool was in con�ict with the philoso-

phy of MH. It provided an interactive shell to access the features of MH, but it

wasn’t just a shell, tailored to the needs of mail handling. Instead it was one large

program that had several MH tools built in. This con�icts with the major feature

of MH of being a tool chest. msh’s main use case had been accessing Bulletin

Boards, which have seized to be popular.

Removing msh, together with the truly archaic code relicts vmh and wmh, saved more

than 7 000 lines of C code – about 15% of the project’s original source code amount.

Having less code (with equal readability, of course) for the same functionality is an

advantage. Less code means less bugs and less maintenance work. As rcvtty and

msgchk are assumed to be rarely used and can be implemented in di�erent ways, why

should one keep them? Removing them stream-lines mmh. viamail’s use case is now

Chapter 2 Discussion 11

partly obsolete and partly covered by forw, hence there’s no reason to still maintain it.
conflict is not related to the mail client, and msh con�icts with the basic concept of
MH. Theses two tools might still be useful, but they should not be part of mmh.

Finally, there’s slocal. slocal is an MDA and thus not directly MUA-related. It
should be removed, because including it is a violation of the idea that mmh is a MUA
only. It should become a separate project. However, slocal provides rule-based pro-
cessing of messages, like �ling them into di�erent folders, which is otherwise not avail-
able in mmh. Although slocal does neither pull in dependencies nor does it include a
separate technical area (cf. Sec. XXX), still it accounts for about 1 000 lines of code that
need to be maintained. As slocal is almost self-standing, it should be split o� into a
separate project. This would cut the strong connection between the MUA mmh and
the MDA slocal. For anyone not using MH, slocal would become yet another
independent MDA, like procmail . The need to install a complete MH system to have
slocal would be gone. Likewise, mmh users could decide to use procmail without
having a second, unused MDA, slocal, installed. That’s conceptionally the best solu-
tion. Yet, slocal is not split o�. I feel unsure with removing it from mmh. Hence, I
defer the decision over slocal. In the meanwhile slocal does not hurt because it is
unrelated to the rest of mmh.

2.1.3 show and mhshow

Since the very beginning – already in the �rst concept paper – show had been MH’s
message display program. show mapped message numbers and sequences to �les and
invoked mhl to have the �les formatted. With MIME, this approach wasn’t su�cient
anymore. MIME messages can consist of multiple parts, some of which aren’t directly
displayable, further more text content might be encoded in foreign charsets. show’s
understanding of messages and mhl’s display capabilities couldn’t cope with the task
any longer.

Instead of extending these tools, additional tools were written from scratch and
added to the MH tool chest. Doing so is encouraged by the tool chest approach.
Modular design is a great advantage for extending a system, as new tools can be added
without interfering with existing ones. First, the new MIME features were added in
form of the single program mhn. The command ‘mhn �show 42’ would show the MIME
message numbered 42. With the 1.0 release of nmh in February 1999, Richard Coleman
�nished the split of mhn into a set of specialized tools, which together covered the mul-
tiple aspects of MIME. One of them was mhshow, which replaced ‘mhn �show’. It was
capable of displaying MIME messages appropriately.

From then on, two message display tools were part of nmh, show and mhshow. To
ease the life of users, show was extended to automatically hand the job over to mhshow

if displaying the message would be beyond show’s abilities. In consequence, the user
would simply invoke show (possibly through next or prev) and get the message
printed with either show or mhshow, whatever was more appropriate.

Having two similar tools for essentially the same task is redundant. Usually, users
wouldn’t distinguish between show and mhshow in their daily mail reading. Having
two separate display programs was therefore mainly unnecessary from a user’s point of
view. Besides, the development of both programs needed to be in sync, to ensure that
the programs behaved in a similar way, because they were used like a single tool.

12 Markus Schnalke: The Modern Mail Handler

Di�erent behavior would have surprised the user.

Today, non-MIME messages are rather seen to be a special case of MIME messages,

although it’s the other way round. As mhshow had already be able to display non-

MIME messages, it appeared natural to drop show in favor of using mhshow exclusively.

[4c1efdd] Removing show is no loss in function, because functionally mhshow covers

it completely. The old behavior of show can still be emulated with the simple com-

mand line:

mhl
mhpath c

For convenience, mhshow was renamed to show after show was gone. It is clear that

such a rename may confuse future developers when trying to understand the history.

Nevertheless, I consider the convenience on the user’s side, to call show when they

want a message to be displayed, to outweigh the inconvenience on the developer’s side

when understanding the project history.

To prepare for the transition, mhshow was reworked to behave more like show �rst.

(cf. Sec. XXX) Once the tools behaved more alike, the replacing appeared to be even

more natural. Today, mmh’s new show became the one single message display pro-

gram again, with the di�erence that today it handles MIME messages as well as non-

MIME messages. The outcome of the transition is one program less to maintain, no

second display program for users to deal with, and less system complexity.

Still, removing the old show hurts in one regard: It had been such a simple pro-

gram. Its lean elegance is missing to the new show. But there is no chance; support-

ing MIME demands for higher essential complexity.

2.1.4 Removal of Con�gure Options

Customization is a double-edged sword. It allows better suiting setups, but not for

free. There is the cost of code complexity to be able to customize. There is the cost of

less tested setups, because there are more possible setups and especially corner-cases.

And, there is the cost of choice itself. The code complexity directly a�ects the

developers. Less tested code a�ects both, users and developers. The problem of choice

a�ects the users, for once by having to choose, but also by complexer interfaces that

require more documentation. Whenever options add little advantages, they should be

considered for removal. I have reduced the number of project-speci�c con�gure

options from �fteen to three.

Mail Transfer Facilities

With the removal of the mail transfer facilities �ve con�gure options vanished:

The switches ��with�tls and ��with�cyrus�sasl had activated the support for

transfer encryption and authentication. This is not needed anymore. [fecd5d3] [

156d35f]

The con�gure switch ��enable�pop activated the message retrieval facility. The

code area that would be conditionally compiled in for TLS and SASL support had been

small. The conditionally compiled code area for POP support had been much larger.

Whereas the code base changes would only slightly change on toggling TLS or SASL

support, it changed much on toggling POP support. The changes in the code base

Chapter 2 Discussion 13

could hardly be overviewed. By having POP support togglable a second code base had
been created, one that needed to be tested. This situation is basically similar for the
conditional TLS and SASL code, but there the changes are minor and can yet be over-
viewed. Still, conditional compilation of a code base creates variations of the original
program. More variations require more testing and maintenance work.

Two other options only speci�ed default con�guration values: ��with�

mts=[smtp�sendmail] de�ned the default transport service. In mmh this �xed to
sendmail. [f6aa95b] With ��with�smtpservers=[server1...] default SMTP
servers for the smtp transport service could be speci�ed. [128545e] Both of them
became irrelevant.

Backup Pre�x

The backup pre�x is the string that was prepended to message �lenames to tag them
as deleted. By default it had been the comma character ‘,’. In July 2000, Kimmo
Suominen introduced the con�gure option ��with�hash�backup to change the default
to the hash symbol ‘#’. The choice was probably personal preference, because �rst, the
option was named ��with�backup�prefix. and had the pre�x symbol as argument.
Because giving the hash symbol as argument caused to many problems for con�gure,
the option was limited to use the hash symbol as the default pre�x. This makes me
believe, that the choice for the hash was personal preference. Being it related or not,
words that start with the hash symbol introduce a comment in the Unix shell. Thus,
the command line ‘rm #13 #15’ calls rm without arguments because the �rst hash
symbol starts the comment that reaches until the end of the line. To delete the backup
�les, ‘rm ./#13 ./#15’ needs to be used. Using the hash as backup pre�x can be seen
as a precaution agains data loss.

I removed the con�gure option but added the pro�le entry backup�prefix, which
allows to specify an arbitrary string as backup pre�x. [6c40d48] Pro�le entries are
the common method to change mmh’s behavior. This change did not remove the
choice but moved it to a location where it suited better.

Eventually, however, the new trash folder concept (→ Sec. XXX) obsoleted the con-
cept of the backup pre�x completely. [8edc5aa] (Well, there still are corner-cases
to remove until the backup pre�x can be laid to rest, eventually.)

Editor and Pager

The two con�gure options ��with�editor=EDITOR ��with�pager=PAGER were used to
specify the default editor and pager at con�gure time. Doing so at con�gure time
made sense in the Eighties, when the set of available editors and pagers varied much
across di�erent systems. Today, the situation is more homogeneous. The programs vi

and more can be expected to be available on every Unix system, as they are speci�ed
by POSIX since two decades. (The speci�cations for vi and more appeared in [XVS87]
and [XCU92], respectively.) As a �rst step, these two tools were hard-coded as
defaults. [5d43a99] Not changed were the editor and moreproc pro�le entries,
which allowed the user to override the system defaults. Later, the concept was
reworked to respect the standard environment variables VISUAL and PAGER if they are
set. Today, mmh determines the editor to use in the following order, taking the �rst
available and non-empty item:

14 Markus Schnalke: The Modern Mail Handler

(1) Environment variable MMHEDITOR

(2) Pro�le entry Editor

(3) Environment variable VISUAL

(4) Environment variable EDITOR

(5) Command vi.

[f85f4b7]

The pager to use is determined in a similar order, also taking the �rst available and
non-empty item:

(1) Environment variable MMHPAGER

(2) Pro�le entry Pager (replaces moreproc)

(3) Environment variable PAGER

(4) Command more.

[0c4214e]

By respecting the VISUAL/EDITOR and PAGER environment variables, the new
behavior con�rms better to the common style on Unix systems. Additionally, the new
approach is more uniform and clearer to users.

Locale

The con�gure option ��disable�locale was removed because POSIX provides locale
support and there’s hardly any need to disable locale support. [ccf4f17]

ndbm

slocal used to depend on ndbm , a database library. The database is used to store the
‘Message�ID’s of all messages delivered. This enables slocal to suppress delivering
the same message to the same user twice. (This features was enabled by the �

suppressdup switch.)

A variety of version of the database library exist [Wolter04]. Complicated autoconf
code was needed to detect them correctly. Further more, the con�gure switches ��

with�ndbm=ARG and ��with�ndbmheader=ARG were added to help with di�cult setups
that would not be detected automatically or correctly.

By removing the suppress duplicates feature of slocal, the dependency on ndbm

vanished and 120 lines of complex autoconf code could be saved. [ecd6d6a] The
change removed functionality too, but that is minor to the improvement by dropping
the dependency and the complex autoconf code.

mh-e Support

The con�gure option ��disable�mhe was removed when the mh-e support was
reworked. Mh-e is the Emacs front-end to MH. It requires MH to provide minor addi-
tional functions. The ��disable�mhe con�gure option could switch these extensions
o�. After removing the support for old versions of mh-e, only the �build switches of
forw and repl are left to be mh-e extensions. They are now always built in because
they add little code and complexity. In consequence, the ��disable�mhe con�gure

Chapter 2 Discussion 15

option was removed [a7ce7b4] Removing the option removed a second code setup
that would have needed to be tested. This change was �rst done in nmh and
thereafter merged into mmh.

The interface changes in mmh require mh-e to be adjusted in order to be able to
use mmh as back-end. This will require minor changes to mh-e, but removing the �

build switches would require more rework.

Masquerading

The con�gure option ��enable�masquerade could take up to three arguments:
‘draft_from’, ‘mmailid’, and ‘username_extension’. They activated di�erent types of
address masquerading. All of them were implemented in the SMTP-speaking post

command, which provided an MSA. Address masquerading is an MTA’s task and mmh
does not cover this �eld anymore. Hence, true masquerading needs to be implemented
in the external MTA.

The mmailid masquerading type is the oldest one of the three and the only one
available in the original MH. It provided a username to fakeusername mapping, based
on the password �le’s GECOS �eld. The man page mh-tailor(5) described the use case
as being the following:

This is useful if you want the messages you send to always appear to come from

the name of an MTA alias rather than your actual account name. For instance,

many organizations set up ‘First.Last’ sendmail aliases for all users. If this is the

case, the GECOS �eld for each user should look like: ‘‘First [Middle] Last

<First.Last>’’

As mmh sends outgoing mail via the local MTA only, the best location to do such
global rewrites is there. Besides, the MTA is conceptionally the right location because
it does the reverse mapping for incoming mail (aliasing), too. Further more,
masquerading set up there is readily available for all mail software on the system.
Hence, mmailid masquerading was removed. [0836c80]

The username_extension masquerading type did not replace the username but
would append a su�x, speci�ed by the USERNAME_EXTENSION environment variable, to
it. This provided support for the user-extension feature of qmail and the similar plussed

user processing of sendmail. The decision to remove this username_extension
masquerading was motivated by the fact that spost hadn’t supported it already. [
2abae0b] Username extensions are possible in mmh, but less convenient to use.

The draft_from masquerading type instructed post to use the value of the From:

header �eld as SMTP envelope sender. Sender addresses could be replaced completely.
[b14ea60] Mmh o�ers a kind of masquerading similar in e�ect, but with technical
di�erences. As mmh does not transfer messages itself, the local MTA has �nal control
over the sender’s address. Any masquerading mmh introduces may be reverted by the
MTA. In times of pedantic spam checking, an MTA will take care to use sensible
envelope sender addresses to keep its own reputation up. Nonetheless, the MUA can
set the From: header �eld and thereby propose a sender address to the MTA. The
MTA may then decide to take that one or generate the canonical sender address for
use as envelope sender address.

16 Markus Schnalke: The Modern Mail Handler

In mmh, the MTA will always extract the recipient and sender from the message
header (sendmail’s �t switch). The From: header �eld of the draft may be set arbi-
trary by the user. If it is missing, the canonical sender address will be generated by
the MTA.

Remaining Options

Two con�gure options remain in mmh. One is the locking method to use: ��with�

locking=[dot�fcntl�flock�lockf]. The idea of removing all methods except the
portable dot locking and having that one as the default is appealing, but this change
requires deeper technical investigation into the topic. The other option, ��enable�

debug, compiles the programs with debugging symbols and does not strip them. This
option is likely to stay.

2.1.5 Removal of Switches

The command line switches of MH tools follow the X Window style. They are words,
introduced by a single dash. For example: ‘�truncate’. Every program in mmh has
two generic switches: �help, to print a short message on how to use the program, and
�Version, to tell what version of mmh the program belongs to.

Switches change the behavior of programs. Programs that do one thing in one way
require no switches. In most cases, doing something in exactly one way is too limit-
ing. If there is basically one task to accomplish, but it should be done in various ways,
switches are a good approach to alter the behavior of a program. Changing the
behavior of programs provides �exibility and customization to users, but at the same
time it complicates the code, documentation and usage of the program. Therefore, the
number of switches should be kept small. A small set of well-chosen switches does no
harm. But usually, the number of switches increases over time. Already in 1985, Rose
and Romine have identi�ed this as a major problem of MH [Rose85, p. 12]:

A complaint often heard about systems which undergo substantial development

by many people over a number of years, is that more and more options are

introduced which add little to the functionality but greatly increase the amount

of information a user needs to know in order to get useful work done. This is

usually referred to as creeping featurism.

Unfortunately MH, having undergone six years of o�-and-on development by

ten or so well-meaning programmers (the present authors included), su�ers

mightily from this.

Being reluctant to adding new switches – or ‘options’, as Rose and Romine call
them – is one part of a counter-action, the other part is removing hardly used
switches. Nmh’s tools had lots of switches already implemented, hence, cleaning up by
removing some of them was the more important part of the counter-action. Removing
existing functionality is always di�cult because it breaks programs that use these func-
tions. Also, for every obsolete feature, there’ll always be someone who still uses it and
thus opposes its removal. This puts the developer into the position, where sensible
improvements to style are regarded as destructive acts. Yet, living with the featurism
is far worse, in my eyes, because future needs will demand adding further features,
worsening the situation more and more. Rose and Romine added in a footnote, ‘‘[...]

Chapter 2 Discussion 17

send will no doubt acquire an endless number of switches in the years to come.’’
Although clearly humorous, the comment points to the nature of the problem. Refus-
ing to add any new switches would encounter the problem at its root, but this is not
practical. New needs will require new switches and it would be unwise to block them
strictly. Nevertheless, removing obsolete switches still is an e�ective approach to deal
with the problem. Working on an experimental branch without an established user
base, eased my work because I did not o�end users when I removed existing funtions.

Rose and Romine counted 24 visible and 9 more hidden switches for send. In nmh,
they increased up to 32 visible and 12 hidden ones. At the time of writing, no more
than 7 visible switches and 1 hidden switch have remained in mmh’s send. (These
numbers include two generic switches, help and version.)

Fig. XXX displays the number of switches for each of the tools that is available in
both, nmh and mmh. Visible as well as hidden switches were counted, but not the
generic help and version switches. Whereas in the beginning of the project, the aver-
age tool had 11 switches, now it has no more than 5 – only half as many. If the ‘no’
switches and similar inverse variant are folded onto their counter-parts, the average
tool has 8 switches in pre-mmh to 4 now. The total number of functional switches in
mmh dropped from 465 to 234.

0

10

20

30

40

number
of

switches

40 tools

.

.
.
.
.
.
.
.
.
.
.
.
......

.
.
..

nmh

mmh

A part of the switches vanished after functions were removed. This was the case
for network mail transfer, for instance. Sometimes, however, the work �ow was the
other way: I looked through the mh-chart (7) man page to identify the tools with
apparently too many switches. Then considering the value of each of the switches by
examining the tool’s man page and source code, aided by recherche and testing. This
way, the removal of functions was suggested by the aim to reduce the number of
switches per command.

Draft Folder Facility

A change early in the project was the completely transition from the single draft mes-
sage to the draft folder facility. [337338b] The draft folder facility was introduced
in the mid-Eighties. (Rose and Romine called it a ‘‘relatively new feature’’ [Rose85] in
1985.) Since then, the facility had existed but was deactivated by default. The default

18 Markus Schnalke: The Modern Mail Handler

activation and the related rework of the tools made it possible to remove the �

[no]draftfolder, and �draftmessage switches from comp, repl, forw, dist, whatnow,
and send. [337338b] The only �exibility removed with this change is having multi-
ple draft folders within one pro�le. I consider this a theoretical problem only. In the
same go, the �draft switch of anno, refile, and send was removed. The special-
casing of ‘the’ draft message became irrelevant after the rework of the draft system.
(See Sec. XXX.) Equally, comp lost its �file switch. The draft folder facility, together
with the �form switch, are su�cient.

Inplace Editing

anno had the switches �[no]inplace to either annotate the message inplace and thus
preserve hard links, or annotate a copy to replace the original message, breaking hard
links. Following the assumption that linked messages should truly be the same mes-
sage, and annotating it should not break the link, the �[no]inplace switches were
removed and the previous default �inplace was made the only behavior. [
c819584] The �[no]inplace switches of repl, forw, and dist could be removed, too,
as they were simply passed through to anno.

burst also had �[no]inplace switches, but with di�erent meaning. With �

inplace, the digest had been replaced by the table of contents (i.e. the introduction
text) and the bursted messages were placed right after this message, renumbering all
following messages. Also, any trailing text of the digest was lost, though, in practice,
it usually consists of an end-of-digest marker only. Nontheless, this behavior appeared
less elegant than the �noinplace behavior, which already had been the default. Nmh’s
burst (1) man page reads:

If -noinplace is given, each digest is preserved, no table of contents is produced,

and the messages contained within the digest are placed at the end of the folder.

Other messages are not tampered with in any way.

The decision to drop the �inplace behavior was supported by the code complexity and
the possible data loss it caused. �noinplace was chosen to be the de�nitive behavior.
[68a686a]

Forms and Format Strings

Historically, the tools that had �form switches to supply a form �le had �format

switches as well to supply the contents of a form �le as a string on the command line
directly. In consequence, the following two lines equaled:

scan �form scan.mailx

scan �format �
cat .../scan.mailx
�

The �format switches were dropped in favor for extending the �form switches. [
f51956b] If their argument starts with an equal sign (‘=’), then the rest of the argu-
ment is taken as a format string, otherwise the arguments is treated as the name of a
format �le. Thus, now the following two lines equal:

Chapter 2 Discussion 19

scan �form scan.mailx

scan �form �=
cat .../scan.mailx
�

This rework removed the pre�x collision between �form and �format. Now, typing �

fo su�ces to specify form or format string.

The di�erent meaning of �format for repl and forw was removed in mmh. forw

was completely switched to MIME-type forwarding, thus removing the �[no]format.
[6e27160] For repl, the �[no]format switches were reworked to �[no]filter

switches. [67411b1] The �format switches of send and post, which had a third
meaning, were removed likewise. [f3cb7cd] Eventually, the ambiguity of the �

format switches was resolved by not anymore having any such switch in mmh.

MIME Tools

The MIME tools, which were once part of mhn, had several switches that added little
practical value to the programs. The �[no]realsize switches of mhbuild and mhlist

were removed, doing real size calculations always now [8d8f1c3], as ‘‘This provides
an accurate count at the expense of a small delay.’’ This small delay is not noticable
on modern systems.

The �[no]check switches were removed together with the support for Content�

MD5: header �elds [RFC 821]. [31dc797] (See Sec. XXX)

The �[no]ebcdicsafe and �[no]rfc934mode switches of mhbuild were removed
because they are considered obsolete. [01a3480] [3363e26]

Content caching of external MIME parts, activated with the �rcache and �wcache

switches was completely removed. [d1fefd9] External MIME parts are rare today,
having a caching facility for them is appears to be unnecessary.

In pre-MIME times, mhl had covered many tasks that are part of MIME handling
today. Therefore, mhl could be simpli�ed to a large extend, reducing the number of its
switches from 21 to 6. [350ad6d] [0e46503]

Mail Transfer Switches

With the removal of the mail transfer facilities, a lot of switches vanished automati-
cally. inc lost 9 switches, namely �host, �port, �user, �proxy, �snoop, �[no]pack, as
well as �sasl and �saslmech. send and post lost 11 switches each, namely �server,
�port, �client, �user, �mail, �saml, �send, �soml, �snoop, as well as �sasl, �

saslmech, and �tls. send had the switches only to pass them further to post,
because the user would invoke post not directly, but through send. All these switches,
except �snoop were usually de�ned as default switches in the user’s pro�le, but hardly
given in interactive usage.

Of course, those switches did not really ‘‘vanish’’, but the con�guration they did
was handed over to external MSAs and MRAs. Instead of setting up the mail transfer
in mmh, it is set up in external tools. Yet, this simpli�es mmh. Specialized external
tools will likely have simple con�guration �les. Hence, instead of having one compli-
cated central con�guration �le, the con�guration of each domain is separate. Although
the user needs to learn to con�gure each of the tools, each con�guration is likely much
simpler.

20 Markus Schnalke: The Modern Mail Handler

Maildrop Formats

With the removal of MMDF maildrop format support, packf and rcvpack no longer
needed their �mbox and �mmdf switches. �mbox is the sole behavior now. [
3916ab6] In the same go, packf and rcvpack were reworked (see Sec. XXX) and their
�file switch became unnecessary. [ca10237]

Terminal Magic

Mmh’s tools will no longer clear the screen (scan’s and mhl’s �[no]clear switches [
e57b173] [943765e]). Neither will mhl ring the bell (�[no]bell [e11983f]) nor
page the output itself (�length [5b9d883]).

Generally, the pager to use is no longer speci�ed with the �[no]moreproc com-
mand line switches for mhl and show/mhshow. [39e87a7]

prompter lost its �erase and �kill switches because today the terminal cares for
the line editing keys.

Header Printing

folder’s data output is self-explaining enough that displaying the header line makes
few sense. Hence, the �[no]header switch was removed and headers are never
printed. [601cc73]

In mhlist, the �[no]header switches were removed, too. [b24f965] But in this
case headers are always printed, because the output is not self-explaining.

scan also had �[no]header switches. Printing the header had been sensible until
the introduction of format strings made it impossible to display the column headings.
Only the folder name and the current date remained to be printed. As this information
can be perfectly retrieved by folder and date, consequently, the switches were
removed. [c477dc5]

By removing all �header switches, the collision with �help on the �rst two letters
was resolved. Currently, �h evaluates to �help for all tools of mmh.

Suppressing Edits or the WhatNow Shell

The �noedit switches of comp, repl, forw, dist, and whatnow was removed, but it can
now be replaced by specifying �editor with an empty argument. [75fca31] (Speci-
fying ‘�editor true’ is nearly the same, only di�ering by the previous editor being
set.)

The more important change is the removal of the �nowhatnowproc switch. [
ee4f43c] This switch had introduced an awkward behavior, as explained in nmh’s man
page for comp (1):

The –editor editor switch indicates the editor to use for the initial edit. Upon

exiting from the editor, comp will invoke the whatnow program. See whatnow(1)

for a discussion of available options. The invocation of this program can be inhi-

bited by using the –nowhatnowproc switch. (In truth of fact, it is the whatnow

program which starts the initial edit. Hence, –nowhatnowproc will prevent any

edit from occurring.)

Chapter 2 Discussion 21

E�ectively, the �nowhatnowproc switch stored a copy of the form �le into the draft
folder. As ‘�whatnowproc true’ causes the same behavior, the �nowhatnowproc switch
was removed for being redundant. Likely, however, the intention for specifying �

nowhatnowproc is sending a fully prepared form �le at once. This can be done with
‘�whatnowproc send’.

Compatibility Switches

• The hidden �[no]total switches of flist. They were simply the inverse of the
visible �[no]fast switches: �total was �nofast and �nototal was �fast. I
removed the �[no]total legacy. [ea21fe2]

• The �subject switch of sortm existed for compatibility only. It can be fully
replaced by ‘�textfield subject’ thus it was removed. [00140a3]

Various

• In order to avoid pre�x collisions among switch names, the �version switch was
renamed to �Version (with capital ‘V’). [32b2354] Every program has the �

version switch but its �rst three letters collided with the �verbose switch, present
in many programs. The rename solved this problem once for all. Although this
rename breaks a basic interface, having the �V abbreviation to display the version
information, isn’t all too bad.

• �[no]preserve of refile was removed because what use was it anyway?

Normally when a message is re�led, for each destination folder it is assigned the

number which is one above the current highest message number in that folder.

Use of the –preserv [sic!] switch will override this message renaming, and try to

preserve the number of the message. If a con�ict for a particular folder occurs

when using the –preserve switch, then re�le will use the next available message

number which is above the message number you wish to preserve.

• The removal of the �[no]reverse switches of scan [8edc5aa] is a bug �x, sup-
ported by the comments ‘‘–[no]reverse under #ifdef BERK (I really HATE this)’’ by
Rose and ‘‘Lists messages in reverse order with the ‘–reverse’ switch. This should
be considered a bug.’’ by Romine in the documentation. The question remains why
neither Rose and Romine had �xed this bug in the Eighties when they wrote these
comments nor has anyone thereafter.

2.2 MODERNIZING

2.2.1 Removal of Code Relicts

The code base of mmh originates from the late Seventies, had been extensively worked
on in the mid Eighties, and had been partly reorganized and extended in the Nineties.
Relicts of all those times had gathered in the code base. My goal was to remove any
ancient code parts. One part of the task was converting obsolete code constructs to
standard constructs, the other part was dropping obsolete functions.

REFERENCES

Bourne82.
Stephen R. Bourne, The UNIX System, International Computer Science Series,
Addison-Wesley, 1982. ISBN: 0201137917

Brooks86.
Frederick P. Brooks, Jr., ‘‘No Silver Bullet: Essence and Accidents of Software
Engineering,’’ in Information Processing 1986, the Proceedings of the IFIP Tenth World

Computing Conference, p. 1069–1076, Elsevier Science B.V., Amsterdam, The Nether-
lands, 1986.

Curry96.
David A. Curry, UNIX Systems Programming for SVR4, Nutshell Series, O’Reilly,
1996. ISBN: 1-56592-163-1

Gancarz95.
Mike Gancarz, The UNIX Philosophy, Digital Press, 1995. ISBN: 1-55558-123-4

Kernighan84.
Brian W. Kernighan and Rob Pike, The UNIX Programming Environment, Prentice
Hall, 1984. ISBN: 0-13-937681-X

Kernighan88.
Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second
Edition, Prentice Hall, 1988. ISBN: 0-13-110362-8

Kernighan99.
Brian W. Kernighan and Rob Pike, The Practice of Programming, Addison-Wesley,
1999. ISBN: 0-201-61586-X

McIlroy78.
M. D. McIlroy, E. N. Pinson, and B. A. Tague, ‘‘UNIX Time-Sharing System: Fore-
word,’’ The Bell System Technical Journal, vol. 57, no. 6, p. 1902, Bell Laboratories,
1978.

ML:edginess.
Paul Vixie, ‘‘edginess,’’ nmh-workers mailing list, December 26 2011.
http://www.mail�archive.com/nmh�workers@nongnu.org/msg02582.html

ML:mmh_ann.
Markus Schnalke, ‘‘Experimental version: mmh,’’ nmh-workers mailing list,
December 8 2011. http://www.mail�archive.com/nmh�

workers@nongnu.org/msg02503.html

ML:MTA-MUA.
Thread with the subjects: ‘‘nmh @ gsoc’’, ‘‘external MTA’’ and ‘‘should nmh be an
MTA or an MUA?,’’ nmh-workers mailing list, January 2010. http://www.mail�

archive.com/nmh�workers@nongnu.org/msg01876.html

31

32 Markus Schnalke: The Modern Mail Handler

Peek95.
Jerry Peek, MH & xmh: Email for Users & Programmers, O’Reilly, 1995.
http://rand�mh.sourceforge.net/book/

RFC 821.
Jonathan B. Postel, Simple Mail Transfer Protocol, Request for Comments, 821, IETF,
August 1982. http://www.ietf.org/rfc/rfc821.txt

Rochkind85.
Marc J. Rochkind, Advanced UNIX Programming, Software Series, Prentice-Hall,
1985. ISBN: 9780130118004

Rose85.
Marshall T. Rose and John L. Romine, ‘‘How to process 200 messages a day and still
get some real work done,’’ in Proceedings, Summer Usenix Conference and Exhibition,
Portland, Oregon, 1985.

Salus94.
Peter H. Salus, A Quarter Century of UNIX, Addison-Wesley, 1994. ISBN:
0-201-54777-5

Schnalke10.
Markus Schnalke, ‘‘Why the Unix Philosophy still matters,’’ Term paper, Ulm
University, 2010. http://marmaro.de/docs/studium/unix�phil/

Wolter04.
Jan Wolter, ‘‘DBM Hash Libraries,’’ in Unix Incompatibility Notes, 2000–2004.
http://www.unixpapa.com/incnote/dbm.html

XCU92.
‘‘Commands and Utilities (XCU), Issue 4,’’ in CAE Speci�cation, The Open Group,
July 1992. ISBN: 1-872630-48-0

XVS87.
‘‘XVS Commands and Utilities,’’ in X/Open Portability Guide, vol. 1, January 1987.
ISBN: 0-444-70174-5

